I. The sequence whose $n^{\text {th }}$ term is $\frac{(-1)^{n} n^{2}}{1+n^{3}}$ converges to 0 . State the Squeeze Principle for limits of sequences,
(6) and use it to verify that this sequence converges to 0 .
II. Sketch the following curve and indicate with an arrow the direction in which the curve is traced as the (5) parameter moves: $x=\cosh (t), y=\sinh (t)$. Give a brief explanation of why this is the graph.
III. The graph of a certain equation $r=f(\theta)$ is
(5) shown at the right, in a rectangular $\theta-r$ coordinate system. In an $x-y$ coordinate system, make a reasonably accurate graph of the polar equation $r=f(\theta)$ for this function.

IV. The graph of a certain polar equation $r=f(\theta)$ is
(5) shown at the right, in an rectangular $x-y$ coordinate system. In a rectangular θ - r coordinate system, make a reasonably accurate graph of the rectangular equation $r=f(\theta)$ for this function. Assume that $r=1$ when $\theta=0$.

V. Give (without extensive verification) examples of the following:
(6)
(a) A sequence a_{n} such that $\left\{\left|a_{n}\right|\right\}$ is monotonic, but $\left\{a_{n}\right\}$ is not monotonic.
(b) A sequence a_{n} such that $\left\{a_{n}\right\}$ is monotonic, but $\left\{\left|a_{n}\right|\right\}$ is not monotonic.
VI. A certain decreasing sequence $\left\{a_{n}\right\}$ has all $a_{n}>0$. Explain how one knows that it must converge.
VII. The figure to the right shows the graph of a po(7) lar equation $r=f(\theta)$ in the $x-y$ plane, and an arrow representing the differential of arclength $d s$, express the two differentials indicated by ? in terms of the differential $d \theta$, and then use them and the Pythagorean theorem to calculate $d s$ in terms of $d \theta$.

VIII. The line $y=x$ is parameterized by $x=t^{3} / 3, y=t^{3} / 3$ for t in the domain of all real numbers. (8)
(a) Calculate $d s$ and use it to find the distance traveled between times $t=-1$ and $t=1$.
(b) The chain rule $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}$ gives the expression $\frac{d y}{d x}=\frac{t^{2}}{t^{2}}$. This expression is undefined when $t=0$. Using the interpretation of the parametric equations as describing the motion of a point P that moves with coordinates $(x, y)=\left(t^{3} / 3, t^{3} / 3\right)$, explain why it is reasonable for $\frac{d y}{d x}$ to be undefined when $t=0$.
IX. A point P moves according to the polar parametric equations $\theta=\sin (t), r=t$. Describe the motion for (5) $\quad 0 \leq t \leq 314.159$. A sketch will certainly be helpful, as will the fact that 1 radian is approximately 57 degrees.

