(5)

- **I**. Find the Taylor series for the function $f(x) = x^3$ at a = -1.
- **II**. Use power series to calculate each of the following:

15)
1.
$$\lim_{x \to 0} \frac{\ln(1+3x) - 3x}{x^2}$$

2. $\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{6^{2n}(2n)!}$

- 3. A numerical series whose value is $\int_0^1 \frac{\sin(x)}{x} dx$ (but do not try to calculate the numerical value of the series).
- III. For a certain function f(x), the Taylor polynomial T_5 of degree 5 at a = 0 is $1 + 20x^3 + x^5$. Suppose (6) that one uses the value $T_5(0.1) = 1.02001$ as an approximation for f(0.1). Suppose that it is known that all derivatives of f have values between 0 and 200 at x-values in the range $-10 \le x \le 10$. Use Taylor's form $R_n(x) = \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$ for the remainder to calculate an upper bound for the error of this approximation (that is, make an upper estimate of $|R_5(0.1)|$).
- **IV**. We know that $\vec{j} \times \vec{i} = -\vec{k}$ and $\vec{k} \times \vec{i} = \vec{j}$. (6)
 - 1. Use these facts to find a vector \vec{v} such that $\vec{v} \times \vec{i} = \vec{j} + 2\vec{k}$.
 - 2. Find a vector \vec{w} such that $\vec{w} \times (\vec{w} + 2\vec{i})$ equals $\vec{j} + 2\vec{k}$.
- V. A straight line L has direction vector $2\vec{i} \vec{j} + \vec{k}$ and passes through the point P = (0, 4, -0.5). (12)
 - 1. Write an equation for L as a vector-valued function of t.
 - 2. Write parametric equations for L.
 - 3. Write equations in symmetric form for L.
 - 4. Write an equation for the plane through P perpendicular to L.
 - 5. Find a normal vector to the plane that contains L and also contains the origin.
- **VI.** Four points O, A, B, and C in the xy-plane are shown (12) in the figure to the right; the angle AOB is a right angle. Let \vec{a} , \vec{b} , and \vec{c} be the vectors from O to A, B, and C respectively.
 - 1. Tell why $\vec{a} \cdot \vec{b} > \vec{a} \cdot \vec{c}$.
 - 2. Tell why $\|\vec{a} \times \vec{b}\| < \|\vec{a} \times \vec{c}\|$.
 - 3. Tell why $(\vec{c} \times \vec{a}) \times \vec{b}$ points in the direction of \vec{a} .
 - 4. Tell the approximate direction of $\vec{c} \times (\vec{a} \times \vec{b})$.

