I. Find the Taylor series for the function $f(x)=x^{3}$ at $a=-1$.
(5)
II. Use power series to calculate each of the following:

1. $\lim _{x \rightarrow 0} \frac{\ln (1+3 x)-3 x}{x^{2}}$.
2. $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{6^{2 n}(2 n)!}$
3. A numerical series whose value is $\int_{0}^{1} \frac{\sin (x)}{x} d x$ (but do not try to calculate the numerical value of the series).
III. For a certain function $f(x)$, the Taylor polynomial $T_{5}$ of degree 5 at $a=0$ is $1+20 x^{3}+x^{5}$. Suppose (6) that one uses the value $T_{5}(0.1)=1.02001$ as an approximation for $f(0.1)$. Suppose that it is known that all derivatives of $f$ have values between 0 and 200 at $x$-values in the range $-10 \leq x \leq 10$. Use Taylor's form $R_{n}(x)=\int_{a}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) d t$ for the remainder to calculate an upper bound for the error of this approximation (that is, make an upper estimate of $\left|R_{5}(0.1)\right|$ ).
IV. We know that $\vec{\jmath} \times \vec{\imath}=-\vec{k}$ and $\vec{k} \times \vec{\imath}=\vec{\jmath}$.
(6)
4. Use these facts to find a vector $\vec{v}$ such that $\vec{v} \times \vec{\imath}=\vec{\jmath}+2 \vec{k}$.
5. Find a vector $\vec{w}$ such that $\vec{w} \times(\vec{w}+2 \vec{\imath})$ equals $\vec{\jmath}+2 \vec{k}$.
V. A straight line $L$ has direction vector $2 \vec{\imath}-\vec{\jmath}+\vec{k}$ and passes through the point $P=(0,4,-0.5)$.
(12)
6. Write an equation for $L$ as a vector-valued function of $t$.
7. Write parametric equations for $L$.
8. Write equations in symmetric form for $L$.
9. Write an equation for the plane through $P$ perpendicular to $L$.
10. Find a normal vector to the plane that contains $L$ and also contains the origin.
VI. Four points $O, A, B$, and $C$ in the $x y$-plane are shown
(12) in the figure to the right; the angle $A O B$ is a right angle. Let $\vec{a}, \vec{b}$, and $\vec{c}$ be the vectors from $O$ to $A, B$, and $C$ respectively.
11. Tell why $\vec{a} \cdot \vec{b}>\vec{a} \cdot \vec{c}$.
12. Tell why $\|\vec{a} \times \vec{b}\|<\|\vec{a} \times \vec{c}\|$.
13. Tell why $(\vec{c} \times \vec{a}) \times \vec{b}$ points in the direction of $\vec{a}$.

14. Tell the approximate direction of $\vec{c} \times(\vec{a} \times \vec{b})$.
