Math 2513 homework

1. (due $8 / 31$) $1.1 \# 5,9,11,13,16,17$
2. $(8 / 31) 1.2 \# 5,6,12,21,28$
3. (8/31) $1.3 \# 5,9,10,13,14,24$ b), c), 31 a), e), 32 a)
4. (9/9) 1.4 \# 5, 6, 19, 21-24, 26-28, 30
5. (9/9) $1.5 \# 17,18,23,24,40,42$
6. $(9 / 9) 1.5 \# 27,28,29,33,39,44$
7. (9/16) 1.5 \# 25-28, 32, 57
8. (9/23) 1.6 \# 5-9, 12-17
9. $(9 / 30) 1.7 \mathrm{\#}$ as many as needed of $1-4$
10. (9/30) 1.7 \# 14, 17c), 19-22, 37, 38
11. (9/30) 1.8 \# 11, 15 (give explanations, of course), 17 (find different solutions from the book's. For 17a) and 17c), one can give a single formula that avoids the need to break into cases, by making use of the expression $|n-1 / 4|)$.
12. $(9 / 30)$ Give formal proofs that the following functions are onto:
(i) $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=7 x-4$.
(ii) $f: \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ defined by $f(x, y, z)=x^{2}+y^{2}+z^{2}$.
13. $(9 / 30)$ Give formal proofs that the following functions are not onto:
(i) $f: \mathbb{R}-\{n \pi \mid n \in \mathbb{Z}\} \rightarrow \mathbb{R}$ defined by $f(x)=\csc (x)$.
(ii) $f: \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x, y, z)=x^{2}+y^{2}+z^{2}$.
14. (10/10) Prove that the sine function $\sin : \mathbb{R} \rightarrow \mathbb{R}$ is not injective.
15. (10/10) Use Rolle's Theorem and proof by contradiction to prove that the sine function $\sin :\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \mathbb{R}$ is injective.
16. (10/10) $1.8 \# 28,29,31$
