Math 2513 homework

- 17. (10/10) Take as known the fact that $\sin: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \left[-1, 1\right]$ is bijective.
 - 1. Sketch the graph of this function in the x-y plane.
 - 2. Let \sin^{-1} be the inverse of this function. Tell the domain and codomain of \sin^{-1} , and sketch the graph of \sin^{-1} in the *x-y* plane.
 - 3. For which x is $\sin(\sin^{-1}(x)) = x$?
 - 4. For which x is $\sin^{-1}(\sin(x)) = x$?
 - 5. Draw a right triangle whose sides are 1, x, and $\sqrt{1-x^2}$, and label which angle is $\sin^{-1}(x)$. Use the triangle to find an expression for $\cos(\sin^{-1}(x))$.
 - 6. Use the identity $\sin(\sin^{-1}(x)) = x$, the chain rule, and the expression for $\cos(\sin^{-1}(x))$ to obtain the formula $\frac{d}{dx}(\sin^{-1}(x)) = \frac{1}{\sqrt{1-x^2}}$. Write this formula as an integration formula.
- 18. (10/17) 2.4 Prove part 3 of Theorem 1, # 6, 7, 12, 13
- 19. (10/17) Be able to write out Euler's proof that there are infinitely many primes from memory.
- 20. (10/17) 2.4 # 16, 17, 28, 29
- 21. (10/24) 2.4 # 30, 32, 38-45
- 22. (10/24) 2.4 # 46
- 23. (10/24) For each integer n with $0 \le n < 12$, use trial and error to find an integer m (with $0 \le m < 12$) for which $5m \equiv n \mod 12$.
- 24. (10/24) Use the fact that $5 \cdot 5 \equiv 1 \mod 12$ to solve the previous problem in a much better way.
- 25. (10/24) This problem will help you understand the theorem that if $a \equiv b \mod m$ and $c \equiv d \mod m$, then $a + c \equiv b + d \mod m$. Define a junk relation $a \ge b$ by $a \ge b \Leftrightarrow (a - b)^2 \le 25$.
 - 1. Prove that for all integers a, $a \ge a$.
 - 2. Prove that for all integers a and b, if $a \ge b$ then $b \ge a$.
 - 3. Find counterexample to the following assertion: If $a \ B b$ and $c \ B d$, then $a + c \ B b + d$.
 - 4. Prove that if $a + c \operatorname{R} b + c$, then $a \operatorname{R} b$.
 - 5. Let \sim be a relation on integers that satisfies $a \sim a$ for all a. Prove that if $a \sim b$ and $c \sim d$ imply that $a + c \sim b + d$, then $a + c \sim b + c$ implies that $a \sim b$.
 - 6. Disprove the converse of the previous statement.