Math 2513 homework

17. (10/10) Take as known the fact that sin: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow[-1,1]$ is bijective.
18. Sketch the graph of this function in the $x-y$ plane.
19. Let $\sin ^{-1}$ be the inverse of this function. Tell the domain and codomain of $\sin ^{-1}$, and sketch the graph of $\sin ^{-1}$ in the $x-y$ plane.
20. For which x is $\sin \left(\sin ^{-1}(x)\right)=x$?
21. For which x is $\sin ^{-1}(\sin (x))=x$?
22. Draw a right triangle whose sides are $1, x$, and $\sqrt{1-x^{2}}$, and label which angle is $\sin ^{-1}(x)$. Use the triangle to find an expression for $\cos \left(\sin ^{-1}(x)\right)$.
23. Use the identity $\sin \left(\sin ^{-1}(x)\right)=x$, the chain rule, and the expression for $\cos \left(\sin ^{-1}(x)\right)$ to obtain the formula $\frac{d}{d x}\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}}$. Write this formula as an integration formula.
24. (10/17) 2.4 Prove part 3 of Theorem 1, \#6, 7, 12, 13
25. (10/17) Be able to write out Euler's proof that there are infinitely many primes from memory.
26. (10/17) 2.4 \# 16, 17, 28, 29
27. (10/24) 2.4 \# 30, 32, 38-45
28. (10/24) 2.4 \# 46
29. (10/24) For each integer n with $0 \leq n<12$, use trial and error to find an integer m (with $0 \leq m<12$) for which $5 m \equiv n \bmod 12$.
30. (10/24) Use the fact that $5 \cdot 5 \equiv 1 \bmod 12$ to solve the previous problem in a much better way.
31. (10/24) This problem will help you understand the theorem that if $a \equiv b \bmod m$ and $c \equiv d \bmod m$, then $a+c \equiv b+d \bmod m$. Define a junk relation $a \mathrm{R} b$ by $a \mathrm{R} b \Leftrightarrow(a-b)^{2} \leq 25$.
32. Prove that for all integers $a, a \mathrm{R} a$.
33. Prove that for all integers a and b, if $a \mathrm{R} b$ then $b \mathrm{R} a$.
34. Find counterexample to the following assertion:

If $a \mathrm{R} b$ and $c \mathrm{R} d$, then $a+c \mathrm{R} b+d$.
4. Prove that if $a+c \mathrm{R} b+c$, then $a \mathrm{R} b$.
5. Let \sim be a relation on integers that satisfies $a \sim a$ for all a. Prove that if $a \sim b$ and $c \sim d$ imply that $a+c \sim b+d$, then $a+c \sim b+c$ implies that $a \sim b$.
6. Disprove the converse of the previous statement.

