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Final Examination
December 14, 2005

Name (please print)

I.
(4)

Use a direct argument to prove the following implication: “The product of two odd integers is odd.”

Let m and n be two odd integers. Since they are odd, we can write them as m = 2k+1 and n = 2`+1
for some integers k and `. Then, we have mn = (2k+1)(2`+1) = 4k`+2`+2k+1 = 2(2k`+`+k)+1,
so mn is odd.

II.
(4)

Prove the following implication by proving its contrapositive: “If n3 6≡ 2 mod 3, then n 6≡ 2 mod 3”
(where 6≡ means “is not congruent to”).

We will argue the contrapositive. Assume that n ≡ 2 mod 3. Then n3 ≡ 23 ≡ 8 ≡ 2 mod 3, the last
congruence since 8− 2 is divisible by 3.

III.
(4)

Fill in the missing parts of the following proof by contradiction: [fill in] If N is prime, then it is a prime
different from any of the pi, a contradiction. If N is composite, write it as N = q1q2 · · · qm. [fill in]

Suppose for contradiction that there are only finitely many primes, say p1, p2, . . . , pk. Put N =
p1p2 · · · pk + 1. No pi divides N , since dividing N by pi gives remainder 1.
Then q1 is a prime which divides N , so q1 is a prime which is not equal to any of the pi, again a
contradiction.

IV.
(3)

Disprove the following assertion: “For all integers a, b, and n, if n|ab, then n|a or n|b.”

6|2 · 3, but 6 6 |2 and 6 6 |3.

V.
(4)

Using the notation G : X2 → X1, define the range of G, the preimage of x1 for an element x1 ∈ X1, the
image of x2 for an element x2 ∈ X2, and the graph of G.

The range of G is {y ∈ X1 | ∃x ∈ X2, G(x) = y}, or {G(x) | x ∈ X2}.
The preimage of x1 is {x ∈ X2 | G(x) = x1}.
The image of x2 is G(x2).
The graph of G is the set {(x,G(x)) | x ∈ X2} (or {(x2, x1) ∈ X2 ×X1 | x1 = G(x2)}).

VI.
(5)

Prove that the set S of all two-element subsets of N is countable as follows: List all the two-element subsets
that contain 1 as follows: {1, 2}, {1, 3}, {1, 4}, {1, 5} . . . . In a second row list all the subsets that contain
2 but do not contain 1 as: {2, 3}, {2, 4}, {2, 5}, {2, 6} . . . . Continue listing a third row and fourth row, so
that if the process of writing rows were continued, every two-element subset would appear exactly once.
Now describe how to form a single list in which every two-element subset appears exactly once.

Arrange the two-element subsets of N as follows:

{1, 2}, {1, 3}, {1, 4}, {1, 5}, . . .
{2, 3}, {2, 4}, {2, 5}, {2, 6}, . . .
{3, 4}, {3, 5}, {3, 6}, {3, 7}, . . .
{4, 5}, {4, 6}, {4, 7}, {4, 8}, . . .

...

Each two-element subset appears exactly once; indeed, for p < q, {p, q} is the (q − p)th entry in the
pth row. The Cantor method of going up and down the diagonals enables us to turn this collection
of lists into a single list: {1, 2}, {1, 3}, {2, 3}, {3, 4}, {2, 4}, {1, 4}, {1, 5}, {2, 5}, {3, 5}, {4, 5}, . . . . Then,
we define a bijection from N to S by sending n to the nth set in this list.
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VII.
(5)

Let S be the set of functions from N to N, that is, S = {f | f : N → N}. Fill in the missing items in the
following proof that S is uncountable: “Suppose for [fill in] that S is countable. Then, the elements of N
can be listed as f1, f2, . . . . Define a new function g ∈ S, that is, g : N → N, as follows: For each n ∈ N,
let [fill in] if fn(n) = 1 and let [fill in] if fn(n) 6= 1. Then for each n, g(n) 6= fn(n) so [fill in]. This is a
contradiction, since [fill in].”

[ contradiction ]

[ g(n) = 2 ]

[ g(n) = 1 ]

[ g 6= fn ]

[ every element of S is one of the fi ]

VIII.
(5)

Prove that 1 · 1! + 2 · 2! + · · ·+ n · n! = (n + 1)!− 1 whenever n is a positive integer.

For n = 1, we have 1 · 1! = 1 · 1 = 1 and (1 + 1)! − 1 = 2 − 1 = 1, so the assertion is true for n = 1.
Inductively, assume that 1·1!+2·2!+· · ·+k·k! = (k+1)!−1. Then, 1·1!+2·2!+· · ·+k·k!+(k+1)·(k+1)! =
(k + 1)!− 1 + (k + 1) · (k + 1)! = (1 + (k + 1)) · (k + 1)!− 1 = (k + 2) · (k + 1)!− 1 = (k + 2)!− 1.

IX.
(3)

State the Pigeonhole Principle (just the basic Pigeonhole Principle, not the Generalized Pigeonhole Prin-
ciple).

If k + 1 objects are place in k boxes, then at least one box contains at least two objects.

X.
(4)

Fill in the missing parts of the following argument, which shows that if one selects any five different numbers
between 2 and 9, then some pair of them adds up to 11: “Let S = {2, 3, 4, 5, 6, 7, 8, 9}, and select any five
numbers from S. Define f : S → [fill in] by the rule f(x) = x if 2 ≤ x ≤ 5 and f(x) = 11− x if 6 ≤ x ≤ 9.
By the Pigeonhole Principle, there must be two of the five numbers, call them m and n with m < n, for
which [fill in]. We cannot have both m ≤ 5 and n ≤ 5, since then we would have m = f(m) = f(n) = n.
Nor can we have m ≥ 6 and n ≥ 6, since then we would have [fill in]. So we must have m ≤ 5 and n ≥ 6.
But then, [fill in], so m + n = 11.”

[ {2, 3, 4, 5} ]

[ f(m) = f(n) ]

[ 11−m = f(m) = f(n) = 11− n and therefore m = n ]

[ m = f(m) = f(n) = 11− n, ]

XI.
(14)

This problem concerns strings of 10 digits d1d2 · · · d10, where each di ∈ {0, 1, 2, . . . , 9}. Leave the answers
to the following questions as expressions which may contain factorials and/or binomial coefficients

(
m
n

)
,

rather than calculating them out.

1. How many strings of 10 digits are there?

There are 10 possibilities for each digit in each of the 10 places, so by the Product Rule there are 1010

possibilities.

2. How many strings of 10 digits contain no 7?

There are 9 possibilities for each digit in each of the 10 places, so by the Product Rule there are 910

possibilities.
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3. How many strings of 10 digits start with three distinct digits?

There are 10 possibilities for the first digit, and for each of these there are then 9 for the second, then
8 for the third, then 107 for the remaining seven digits. By the Product Rule, there are 108 · 9 · 8
possibilities.

4. How many strings of 10 digits have no two equal digits (that is, have all their digits different)?

This is exactly the number of permutations of 10 elements, 10!.

5. How many strings of 10 digits contain exactly two 4’s?

There are
(
10
2

)
possible choices for where the two 4’s go, and for each of these choices there are 98

possibilities for the remaining eight places. By the Product Rule, there are
(
10
2

)
98 possibilities.

6. How many strings of 10 digits contain exactly two 4’s and two 3’s?

There are
(
10
2

)
possible choices for where the two 4’s go. For each of these, there are

(
8
2

)
possible choices

for where the two 3’s go, and for each of these choices there are 86 possibilities for the remaining six
places. By the Product Rule, there are

(
10
2

)(
8
2

)
86 possibilities.

7. How many strings of 10 digits either start with three 5’s or end with two 5’s, or both?

For a string starting with three 5’s, there are 107 choices for the remaining seven places. For a string
ending with two 5’s, there are 108 choices for the remaining seven places. For a string both starting
with three 5’s and ending with two 5’s, there are 105 choices for the remaining five places. By the
Inclusion-Exclusion Principle, the total number of possibilities is 107 + 108 − 105.

XII.
(5)

Draw Pascal’s Triangle down to the row that contains the binomial coefficients
(
7
k

)
. Use this row and the

Binomial Theorem to write out (a− 1)7 (giving the explicit numerical values of the coefficients).

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

By the Binomial Theorem,

(a− 1)7 = (a + (−1))7 =
7∑

k=0

(
7
k

)
a7−k(−1)k

=
(

7
0

)
a7(−1)0 +

(
7
1

)
a6(−1)1 +

(
7
2

)
a5(−1)2 +

(
7
3

)
a4(−1)3

+
(

7
4

)
a3(−1)4 +

(
7
5

)
a2(−1)5 +

(
7
6

)
a1(−1)6 +

(
7
7

)
a0(−1)7

= a7 − 7a6 + 21a5 − 35a4 + 35a3 − 21a2 + 7a− 1
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XIII.
(7)

This problem concerns the identity n
(
n−1
k−1

)
= k

(
n
k

)
.

1. Verify the identity by calculation using the formula for
(
n−1
k−1

)
.

n

(
n− 1
k − 1

)
= n · (n− 1)!

(k − 1)! ((n− 1)− (k − 1))!
=

n · (n− 1)!
(k − 1)! (n− k)!

=
n!

(k − 1)! (n− k)!
= k · n!

k(k − 1)! (n− k)!
= k · n!

k! (n− k)!
= k

(
n

k

)
2. Verify the identity by counting using two different methods the number of ways to choose a subset with k

elements from a set of n elements, then choose one of the elements of this subset. That is, let S be a set of
n elements and count the number of pairs (A, x) where A has k elements, A ⊆ S, and x ∈ A.

There are
(
n
k

)
ways to choose a subset A of k elements, and for each of these ways threre are k ways to

choose an element x of A, giving k
(
n
k

)
possible ways.

On the other hand, if we think of selecting x first, there are n possible ways to select x, and then there
are

(
n−1
k−1

)
possible ways to choose the remaining k− 1 elements of A from the remaining n− 1 elements

of S, giving n
(
n−1
k−1

)
possible ways.

Since both of these methods counting the same thing, we must have n
(
n−1
k−1

)
= k

(
n
k

)
.

XIV.
(3)

List all the ordered pairs in the relation on the set A = {1, 2, 3, 4} defined by a R b ⇔ a|b.

{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)}

XV.
(4)

Verify that the relation of congruence modulo m is an equivalence relation.

To prove that congruence is reflexive, let a be any integer. Since m|a− a, we have a ≡ a mod m.

To prove that congruence is symmetric, assume that a ≡ b mod m. Then m|a− b, so m|(−1)(a− b),
m|b− a. Therefore b ≡ a mod m.

To prove that congruence is transitive, assume that a ≡ b mod m and b ≡ c mod m. Then m|a− b
and m|b− c. Therefore m|(a− b) + (b− c), which says that m|a− c. That is, a ≡ c mod m.
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XVI.
(6)

List explicitly the elements in the congruence classes [0], [1], [2], [3], [4], [5] for the equivalence relation
of congruence modulo 6 on the set of integers (show at least five integers from each class). Write out
the addition and multiplication tables for the set {[0], [1], [2], [3], [4], [5]}. Which elements have inverses for
multiplication?

[0] = {. . . ,−12,−6, 0, 6, 12, . . .}
[1] = {. . . ,−11,−5, 1, 7, 13, . . .}
[2] = {. . . ,−10,−4, 2, 8, 14, . . .}
[3] = {. . . ,−9,−3, 3, 9, 15, . . .}
[4] = {. . . ,−8,−2, 4, 10, 16, . . .}
[5] = {. . . ,−7,−1, 5, 11, 17, . . .}

+ [0] [1] [2] [3] [4] [5] · [0] [1] [2] [3] [4] [5]

[0] [0] [1] [2] [3] [4] [5] [0] [0] [0] [0] [0] [0] [0]

[1] [1] [2] [3] [4] [5] [0] [1] [0] [1] [2] [3] [4] [5]

[2] [2] [3] [4] [5] [0] [1] [2] [0] [2] [4] [0] [2] [4]

[3] [3] [4] [5] [0] [1] [2] [3] [0] [3] [0] [3] [0] [3]

[4] [4] [5] [0] [1] [2] [3] [4] [0] [4] [2] [0] [4] [2]

[5] [5] [0] [1] [2] [3] [4] [5] [0] [5] [4] [3] [2] [1]

From the table, only [1] and [5] have multiplicative inverses (which is because 1 and 5 are the only two that
are relatively prime to 6).


