Instructions: Give *brief*, clear answers.

- **I**. For sets A and B, give the precise definitions of $A \cap B$, $A \cup B$, $A \subseteq B$, and A = B.
- **II**. Prove that $\{\emptyset, \{\{\emptyset\}\}\} \subseteq \{\emptyset, \{\emptyset\}\}$ is false.
- (3)

(4)

- **III**. Disprove the following assertions.
- (4)
 - 1. For any three sets A, B, and C, if $A \cup C = B \cup C$, then A = B.
 - 2. For any three sets A, B, and C, $A \cup (B \cap C) = (A \cup B) \cap C$.
- **IV**. Prove that if $A \subseteq B$, then $A \times C \subseteq B \times C$.
- (4)
- **V**. Prove that the function $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ defined by f(m, n) = m n is surjective.
- (3)
- **VI**. Prove that the function $g: [0, \infty) \to \mathbb{R}$ defined by $g(x) = x^2$ is injective.
- (4)
- VII. State Rolle's Theorem. Use it to give a proof by contradiction showing that the function $f: [0, \pi] \to [-1, 1]$ (5) defined by $f(x) = \cos(x)$ is injective.
- **VIII.** For the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \pi x 13.4$, find a formula for the composition $(f \circ f \circ f)(x)$. (3)
- **IX**. Using the notation $h: Y \to X$, define the range of h, the preimage of x for an element $x \in X$, the image
- (4) of y for an element $y \in Y$, and the graph of h.
- **X**. Simplify each of the following:
- (4)
 - 1. $\overline{(2,\infty)} \cap (0,3]$, assuming that the universal set is $\mathcal{U} = \mathbb{R}$ (the answer should be written as a union of two intervals).
 - 2. $P(0) \cap P(1)$, where P(r) denotes the preimage of a number r for a function $f: \mathbb{R} \to \mathbb{R}$.
- **XI**. Prove that if a|b and b|c, then a|c.
- (4)
- **XII.** Prove that if a|c and b|d, then ab|cd.
- (4)
- **XIII**. State the Fundamental Theorem of Arithmetic.
- (3)
- **XIV**. Complete the following proof that there are infinitely many primes: "Suppose for contradiction that there
- (4) are finitely many primes, say p_1, p_2, \ldots, p_k . Put $N = p_1 p_2 \cdots p_k + 1$. Notice that no p_i divides N."