Instructions: Give brief, clear answers.
I. For sets A and B, give the precise definitions of $A \cap B, A \cup B, A \subseteq B$, and $A=B$.
II. Prove that $\{\emptyset,\{\{\emptyset\}\}\} \subseteq\{\emptyset,\{\emptyset\}\}$ is false.
III. Disprove the following assertions.
(4)

1. For any three sets A, B, and C, if $A \cup C=B \cup C$, then $A=B$.
2. For any three sets A, B, and $C, A \cup(B \cap C)=(A \cup B) \cap C$.
IV. Prove that if $A \subseteq B$, then $A \times C \subseteq B \times C$.
V. Prove that the function $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(m, n)=m-n$ is surjective.
(3)
VI. Prove that the function $g:[0, \infty) \rightarrow \mathbb{R}$ defined by $g(x)=x^{2}$ is injective.
(4)
VII. State Rolle's Theorem. Use it to give a proof by contradiction showing that the function $f:[0, \pi] \rightarrow[-1,1]$
(5) defined by $f(x)=\cos (x)$ is injective.
VIII. For the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\pi x-13.4$, find a formula for the composition $(f \circ f \circ f)(x)$.
IX. Using the notation $h: Y \rightarrow X$, define the range of h, the preimage of x for an element $x \in X$, the image
(4) of y for an element $y \in Y$, and the graph of h.
X. Simplify each of the following:
(4)
3. $\overline{(2, \infty)} \cap(0,3]$, assuming that the universal set is $\mathcal{U}=\mathbb{R}$ (the answer should be written as a union of two intervals).
4. $P(0) \cap P(1)$, where $P(r)$ denotes the preimage of a number r for a function $f: \mathbb{R} \rightarrow \mathbb{R}$.
XI. Prove that if $a \mid b$ and $b \mid c$, then $a \mid c$.
(4)
XII. Prove that if $a \mid c$ and $b \mid d$, then $a b \mid c d$.
(4)
XIII. State the Fundamental Theorem of Arithmetic.
(3)
XIV. Complete the following proof that there are infinitely many primes: "Suppose for contradiction that there are finitely many primes, say $p_{1}, p_{2}, \ldots, p_{k}$. Put $N=p_{1} p_{2} \cdots p_{k}+1$. Notice that no p_{i} divides N. .."
