Instructions: Give *brief*, clear answers.

I. For sets A and B, give the precise definitions of $A \cap B$, $A \cup B$, $A \subseteq B$, and A = B.

(4) 1. $A \cap B = \{x \mid x \in A \land x \in B\}.$

- $2. \ A\cup B=\{x\mid x\in A \lor x\in B\}.$
- 3. $A \subseteq B \equiv \forall x, (x \in A \Rightarrow x \in B).$
- 4. $A = B \equiv \forall x, (x \in A \Leftrightarrow x \in B).$
- $$\begin{split} \textbf{II.} & \text{Prove that } \{\emptyset, \{\{\emptyset\}\}\} \subseteq \{\emptyset, \{\emptyset\}\} \text{ is false.} \\ (3) & \\ \{\{\emptyset\}\} \in \{\emptyset, \{\{\emptyset\}\}\} \text{ but } \{\{\emptyset\}\} \notin \{\emptyset, \{\emptyset\}\}. \end{split}$$

III. Disprove the following assertions.

(4) 1. For any three sets A, B, and C, if $A \cup C = B \cup C$, then A = B.

 $\mathbb{N} \cup \mathbb{R} = \mathbb{R} = \mathbb{Z} \cup \mathbb{R} \text{ but } \mathbb{N} \neq \mathbb{Z}, \text{ or}$ $\{1\} \cup \{1, 2\} = \{2\} \cup \{1, 2\}, \text{ but } \{1\} \neq \{2\}.$

2. For any three sets A, B, and C, $A \cup (B \cap C) = (A \cup B) \cap C$.

 $\mathbb{R} \cup (\mathbb{N} \cap \mathbb{Z}) = \mathbb{R} \cup \mathbb{N} = \mathbb{R} \text{ but } (\mathbb{R} \cup \mathbb{N}) \cap \mathbb{Z} = \mathbb{R} \cap \mathbb{Z} = \mathbb{Z}, \text{ or}$ $\{1\} \cup (\{1\} \cap \{2\}) = \{1\} \cup \emptyset = \{1\}, \text{ but } (\{1\} \cup \{1\}) \cap \{2\} = \{1\} \cap \{2\} = \emptyset.$

IV. Prove that if $A \subseteq B$, then $A \times C \subseteq B \times C$.

(4)

Assume that $A \subseteq B$. Assume that $(a, c) \in A \times C$, so $a \in A$ and $c \in C$. Since $A \subseteq B$, we have $a \in B$. Since $a \in B$ and $c \in C$, $(a, c) \in B \times C$.

- **V**. Prove that the function $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ defined by f(m, n) = m n is surjective.
- (3) Let $k \in \mathbb{Z}$. Then, $(k, 0) \in \mathbb{Z} \times \mathbb{Z}$ and f(k, 0) = k.
- **VI**. Prove that the function $g: [0, \infty) \to \mathbb{R}$ defined by $g(x) = x^2$ is injective.

(4) Let $r_1, r_2 \in [0, \infty)$ and assume that $r_1^2 = r_2^2$. Then $\sqrt{r_1^2} = \sqrt{r_2^2}$, that is, $|r_1| = |r_2|$. Since $r_1 \ge 0$, we have $|r_1| = r_1$, and similarly $|r_2| = r_2$, so $r_1 = r_2$.

VII. State Rolle's Theorem. Use it to give a proof by contradiction showing that the function $f: [0, \pi] \to [-1, 1]$ (5) defined by $f(x) = \cos(x)$ is injective.

Rolle's Theorem says that if a function $f: [a, b] \to \mathbb{R}$ is continuous on [a, b] and differentiable on (a, b), and f(a) = f(b), then there exists $c \in (a, b)$ such that f'(c) = 0.

Suppose for contradiction that there exist $x_1, x_2 \in [0, \pi]$ with $\cos(x_1) = \cos(x_2)$ but $x_1 \neq x_2$. By Rolle's Theorem, there exists c between x_1 and x_2 for which $0 = \cos'(c) = -\sin(c)$. But $\sin(c) \neq 0$ for any $c \in (0, \pi)$, a contradiction.

VIII. For the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \pi x - 13.4$, find a formula for the composition $(f \circ f \circ f)(x)$. (3)

 $(f \circ f \circ f)(x) = f(f(f(x))) = f(f(\pi x - 13.4)) = f(\pi(\pi x - 13.4) - 13.4) = f(\pi^2 x - 13.4\pi - 13.4) = \pi(\pi^2 x - 13.4\pi - 13.4) - 13.4 = \pi^3 x - 13.4\pi^2 - 13.4\pi - 13.4.$

IX. Using the notation $h: Y \to X$, define the range of h, the preimage of x for an element $x \in X$, the image (4) of y for an element $y \in Y$, and the graph of h.

The range of h is $\{x \in X \mid \exists y \in Y, h(y) = x\}$, or $\{h(y) \mid y \in Y\}$.

The preimage of x is $\{y \in Y \mid h(y) = x\}$.

The image of y is h(y).

The graph of h is the set $\{(y, h(y)) \mid y \in Y\}$ (or $\{(y, x) \in Y \times X \mid x = h(y)\}$).

X. Simplify each of the following:

- (4)
 - 1. $\overline{(2,\infty)} \cap (0,3]$, assuming that the universal set is $\mathcal{U} = \mathbb{R}$ (the answer should be written as a union of two intervals).

$$\overline{\overline{(2,\infty)} \cap (0,3]} = \overline{(-\infty,2] \cap (0,3]} = \overline{(0,2]} = (-\infty,0] \cup (2,\infty), \text{ or}$$
$$\overline{\overline{(2,\infty)} \cap (0,3]} = \overline{\overline{(2,\infty)}} \cup \overline{(0,3]} = (2,\infty) \cup ((-\infty,0] \cup (3,\infty)) = (-\infty,0] \cup ((2,\infty) \cup (3,\infty))$$
$$= (-\infty,0] \cup (2,\infty)$$

2. $P(0) \cap P(1)$, where P(r) denotes the preimage of a number r for a function $f: \mathbb{R} \to \mathbb{R}$.

$$P(0) \cap P(1) = \{x \in \mathbb{R} \mid f(r) = 0\} \cap \{x \in \mathbb{R} \mid f(r) = 1\} = \{x \in \mathbb{R} \mid f(r) = 0 \land f(r) = 1\} = \emptyset$$

XI. Prove that if a|b and b|c, then a|c.

(4)

XII. Prove that if a|c and b|d, then ab|cd.

(4)

Assume that a|c and b|d. Then there exist integers k, ℓ so that c = ka and $d = \ell b$. So we have $cd = (ka)(\ell b) = (k\ell)ab$, that is, ab|cd.

- XIII. State the Fundamental Theorem of Arithmetic.
- (3)

Any integer a > 1 can be written as a product of prime factors. If the factors are written in nondecreasing order, then this factorization is unique.

XIV. Complete the following proof that there are infinitely many primes: "Suppose for contradiction that there (4) are finitely many primes, say p_1, p_2, \ldots, p_k . Put $N = p_1 p_2 \cdots p_k + 1$. Notice that no p_i divides N...."

If N is prime, then it is a prime different from any of the p_i , a contradiction. If N is composite, write it as $N = q_1 q_2 \cdots q_m$. Then q_1 is a prime which divides N, so q_1 is a prime which is not equal to any of the p_i , again a contradiction.

Assume that a|b and b|c. Then there exist integers k, ℓ so that b = ka and $c = \ell b$. So $c = \ell b = (\ell k)a$, that is, a|c.