Instructions: Give brief, clear answers.
I. For sets A and B, give the precise definitions of $A \cap B, A \cup B, A \subseteq B$, and $A=B$.
(4)

1. $A \cap B=\{x \mid x \in A \wedge x \in B\}$.
2. $A \cup B=\{x \mid x \in A \vee x \in B\}$.
3. $A \subseteq B \equiv \forall x,(x \in A \Rightarrow x \in B)$.
4. $A=B \equiv \forall x,(x \in A \Leftrightarrow x \in B)$.
II. Prove that $\{\emptyset,\{\{\emptyset\}\}\} \subseteq\{\emptyset,\{\emptyset\}\}$ is false.
(3) $\{\{\emptyset\}\} \in\{\emptyset,\{\{\emptyset\}\}\}$ but $\{\{\emptyset\}\} \notin\{\emptyset,\{\emptyset\}\}$.
III. Disprove the following assertions.
(4)
5. For any three sets A, B, and C, if $A \cup C=B \cup C$, then $A=B$.

$$
\begin{aligned}
& \mathbb{N} \cup \mathbb{R}=\mathbb{R}=\mathbb{Z} \cup \mathbb{R} \text { but } \mathbb{N} \neq \mathbb{Z}, \text { or } \\
& \{1\} \cup\{1,2\}=\{2\} \cup\{1,2\}, \text { but }\{1\} \neq\{2\} .
\end{aligned}
$$

2. For any three sets A, B, and $C, A \cup(B \cap C)=(A \cup B) \cap C$.

$$
\begin{aligned}
& \mathbb{R} \cup(\mathbb{N} \cap \mathbb{Z})=\mathbb{R} \cup \mathbb{N}=\mathbb{R} \text { but }(\mathbb{R} \cup \mathbb{N}) \cap \mathbb{Z}=\mathbb{R} \cap \mathbb{Z}=\mathbb{Z} \text {, or } \\
& \{1\} \cup(\{1\} \cap\{2\})=\{1\} \cup \emptyset=\{1\}, \text { but }(\{1\} \cup\{1\}) \cap\{2\}=\{1\} \cap\{2\}=\emptyset .
\end{aligned}
$$

IV. Prove that if $A \subseteq B$, then $A \times C \subseteq B \times C$.

Assume that $A \subseteq B$. Assume that $(a, c) \in A \times C$, so $a \in A$ and $c \in C$. Since $A \subseteq B$, we have $a \in B$. Since $a \in B$ and $c \in C,(a, c) \in B \times C$.
V. Prove that the function $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(m, n)=m-n$ is surjective.

Let $k \in \mathbb{Z}$. Then, $(k, 0) \in \mathbb{Z} \times \mathbb{Z}$ and $f(k, 0)=k$.
VI. Prove that the function $g:[0, \infty) \rightarrow \mathbb{R}$ defined by $g(x)=x^{2}$ is injective.
(4)

Let $r_{1}, r_{2} \in[0, \infty)$ and assume that $r_{1}^{2}=r_{2}^{2}$. Then $\sqrt{r_{1}^{2}}=\sqrt{r_{2}^{2}}$, that is, $\left|r_{1}\right|=\left|r_{2}\right|$. Since $r_{1} \geq 0$, we have $\left|r_{1}\right|=r_{1}$, and similarly $\left|r_{2}\right|=r_{2}$, so $r_{1}=r_{2}$.
VII. State Rolle's Theorem. Use it to give a proof by contradiction showing that the function $f:[0, \pi] \rightarrow[-1,1]$ defined by $f(x)=\cos (x)$ is injective.

Rolle's Theorem says that if a function $f:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and differentiable on (a, b), and $f(a)=f(b)$, then there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Suppose for contradiction that there exist $x_{1}, x_{2} \in[0, \pi]$ with $\cos \left(x_{1}\right)=\cos \left(x_{2}\right)$ but $x_{1} \neq x_{2}$. By Rolle's Theorem, there exists c between x_{1} and x_{2} for which $0=\cos ^{\prime}(c)=-\sin (c)$. But $\sin (c) \neq 0$ for any $c \in(0, \pi)$, a contradiction.
VIII. For the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\pi x-13.4$, find a formula for the composition $(f \circ f \circ f)(x)$.

$$
\begin{equation*}
(f \circ f \circ f)(x)=f(f(f(x)))=f(f(\pi x-13.4))=f(\pi(\pi x-13.4)-13.4)=f\left(\pi^{2} x-13.4 \pi-13.4\right)= \tag{3}
\end{equation*}
$$

$$
\pi\left(\pi^{2} x-13.4 \pi-13.4\right)-13.4=\pi^{3} x-13.4 \pi^{2}-13.4 \pi-13.4
$$

IX. Using the notation $h: Y \rightarrow X$, define the range of h, the preimage of x for an element $x \in X$, the image
(4) of y for an element $y \in Y$, and the graph of h.

The range of h is $\{x \in X \mid \exists y \in Y, h(y)=x\}$, or $\{h(y) \mid y \in Y\}$.
The preimage of x is $\{y \in Y \mid h(y)=x\}$.
The image of y is $h(y)$.
The graph of h is the set $\{(y, h(y)) \mid y \in Y\}$ (or $\{(y, x) \in Y \times X \mid x=h(y)\})$.
X. Simplify each of the following:
(4)

1. $\overline{\overline{(2, \infty)} \cap(0,3]}$, assuming that the universal set is $\mathcal{U}=\mathbb{R}$ (the answer should be written as a union of two intervals).

$$
\begin{aligned}
& \overline{\overline{(2, \infty)} \cap(0,3]}=\overline{(-\infty, 2] \cap(0,3]}=\overline{(0,2]}=(-\infty, 0] \cup(2, \infty) \text {, or } \\
& \overline{\overline{(2, \infty)} \cap(0,3]}=\overline{\overline{(2, \infty)}} \cup \overline{(0,3]}=(2, \infty) \cup((-\infty, 0] \cup(3, \infty))=(-\infty, 0] \cup((2, \infty) \cup(3, \infty)) \\
& =(-\infty, 0] \cup(2, \infty)
\end{aligned}
$$

2. $P(0) \cap P(1)$, where $P(r)$ denotes the preimage of a number r for a function $f: \mathbb{R} \rightarrow \mathbb{R}$.
$P(0) \cap P(1)=\{x \in \mathbb{R} \mid f(r)=0\} \cap\{x \in \mathbb{R} \mid f(r)=1\}=\{x \in \mathbb{R} \mid f(r)=0 \wedge f(r)=1\}=\emptyset$
XI. Prove that if $a \mid b$ and $b \mid c$, then $a \mid c$.
(4)

Assume that $a \mid b$ and $b \mid c$. Then there exist integers k, ℓ so that $b=k a$ and $c=\ell b$. So $c=\ell b=(\ell k) a$, that is, $a \mid c$.
XII. Prove that if $a \mid c$ and $b \mid d$, then $a b \mid c d$.

Assume that $a \mid c$ and $b \mid d$. Then there exist integers k, ℓ so that $c=k a$ and $d=\ell b$. So we have $c d=(k a)(\ell b)=$ $(k \ell) a b$, that is, $a b \mid c d$.
XIII. State the Fundamental Theorem of Arithmetic.

Any integer $a>1$ can be written as a product of prime factors. If the factors are written in nondecreasing order, then this factorization is unique.
XIV. Complete the following proof that there are infinitely many primes: "Suppose for contradiction that there are finitely many primes, say $p_{1}, p_{2}, \ldots, p_{k}$. Put $N=p_{1} p_{2} \cdots p_{k}+1$. Notice that no p_{i} divides N..."

If N is prime, then it is a prime different from any of the p_{i}, a contradiction. If N is composite, write it as $N=q_{1} q_{2} \cdots q_{m}$. Then q_{1} is a prime which divides N, so q_{1} is a prime which is not equal to any of the p_{i}, again a contradiction.

