Instructions: Give brief, clear answers.
I. Prove that the function $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(m, n)=m-n$ is surjective.

Let $k \in \mathbb{Z}$. Then, $(k, 0) \in \mathbb{Z} \times \mathbb{Z}$ and $f(k, 0)=k$.
II. Using the notation $h: Y \rightarrow X$, define the range of h, the preimage of x for an element $x \in X$, the image
(4) of y for an element $y \in Y$, and the graph of h.

The range of h is $\{x \in X \mid \exists y \in Y, h(y)=x\}$, or $\{h(y) \mid y \in Y\}$.
The preimage of x is $\{y \in Y \mid h(y)=x\}$.
The image of y is $h(y)$.
The graph of h is the set $\{(y, h(y)) \mid y \in Y\}$ (or $\{(y, x) \in Y \times X \mid x=h(y)\})$.
III. Let S be the set of sequences of 0 's and 1's, $S=\left\{a_{1} a_{2} a_{3} \cdots \mid a_{i} \in\{0,1\}\right\}$. A typical element of S is
(6) $001011011100011010 \cdots$. Adapt Cantor's proof that \mathbb{R} is uncountable to prove that S is uncountable.

Suppose for contradiction that there exists a bijective function $f: \mathbb{N} \rightarrow S$. List the elements $f(1)$, $f(2), \ldots$ as

$$
\begin{aligned}
& f(1)=a_{11} a_{12} a_{13} \cdots \\
& f(2)=a_{21} a_{22} a_{23} \cdots \\
& f(3)=a_{31} a_{32} a_{33} \cdots
\end{aligned}
$$

Define an element $s=b_{1} b_{2} b_{3} \cdots$ of S by $b_{i}=1$ if $a_{i i}=0$ and $b_{i}=0$ if $a_{i i}=1$. For all $n, b_{n} \neq a_{n n}$ so $s \neq f(n)$. Therefore s is an element of S which is not in the image of f, so f is not surjective. This is a contradiction, since f was a bijection.
IV. Let a and b be integers, at least one of them nonzero.

1. Define the greatest common divisor $\operatorname{gcd}(a, b)$.
$\operatorname{gcd}(a, b)$ is the largest integer that divides both a and b.
2. Find $\operatorname{gcd}\left(2^{3} \cdot 3^{3} \cdot 7^{2} \cdot 13 \cdot 17,2 \cdot 3^{4} \cdot 5 \cdot 7 \cdot 17\right)$ and $\operatorname{lcm}\left(2^{3} \cdot 3^{3} \cdot 7^{2} \cdot 13 \cdot 17,2 \cdot 3^{4} \cdot 5 \cdot 7 \cdot 17\right)$ (leave the results in factored form, do not multiply them out).

For $\operatorname{gcd}\left(2^{3} \cdot 3^{3} \cdot 7^{2} \cdot 13 \cdot 17,2 \cdot 3^{4} \cdot 5 \cdot 7 \cdot 17\right)$, we take the smaller power of each prime factor that appears in either a or b, obtaining $2 \cdot 3^{3} \cdot 7 \cdot 17$. For $\operatorname{lcm}(a, b)$, we take the maximum power, obtaining $\operatorname{lcm}\left(2^{3} \cdot 3^{3} \cdot 7^{2} \cdot 13 \cdot 17,2 \cdot 3^{4} \cdot 5 \cdot 7 \cdot 17\right)=2^{3} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 13 \cdot 17$.
3. Assuming that both a and b are positive, describe the Euclidean algorithm for computing $\operatorname{gcd}(a, b)$.

Take the larger of a or b and replace it by the remainder obtained when it is divided by the smaller. Repeat this process until one of the two numbers is 0 , and then the greatest common divisor is the other one.
V. Which positive integers less than 10 are relatively prime to 10 ?
(3) Since the prime divisors of 10 are 2 and 5 , they are the integers from 1 to 9 that are not even, eliminating $2,4,6$, and 8 , and not divisible by 5 , eliminating 5 . The remaining ones are $1,3,7$, and 9 .
VI. Use the fact that $7 \cdot 8 \equiv 1 \bmod 55$ to find an integer m for which $8 m \equiv 11 \bmod 55$.
(4)

We will "solve" the equation $8 m \equiv 11 \bmod 55$, using properties of congruence. Multiplying both sides of it by 7 , we would have $7 \cdot 8 \cdot m \equiv 7 \cdot 11 \bmod 55$, and $7 \cdot 8 \equiv 1 \bmod 55$ so this becomes just $m \equiv 77 \bmod 55$. That is, m can be anything of the form $55 k+77$. (This set can also be described as all numbers of the form $55 k+22$.)
VII. Use induction to prove that $1 \cdot 1!+2 \cdot 2!+\cdots+n \cdot n!=(n+1)!-1$ whenever n is a positive integer.
(6)

For $n=1$, we have $1 \cdot 1!=1 \cdot 1=1$ and $(1+1)!-1=2-1=1$, so the assertion is true for $n=1$. Inductively, assume that $1 \cdot 1!+2 \cdot 2!+\cdots+k \cdot k!=(k+1)!-1$. Then, $1 \cdot 1!+2 \cdot 2!+\cdots+k \cdot k!+(k+1) \cdot(k+1)!=$ $(k+1)!-1+(k+1) \cdot(k+1)!=(1+(k+1)) \cdot(k+1)!-1=(k+2) \cdot(k+1)!-1=(k+2)!-1$.
VIII. Prove that if there exists d so that $c d \equiv 1 \bmod m$, then $\operatorname{gcd}(c, m)=1$. Hint: use the theorem that says $\operatorname{gcd}(a, b)$ is the least positive sum of multiples of a and b.

Assume that $c d \equiv 1 \bmod m$. This says that $m \mid c d-1$, so there exists s so that $s m=c d-1$ or $1=d c+(-s) m$. By the theorem, this says that $\operatorname{gcd}(c, m)=1$.
IX. Adapt the argument of Cantor's proof that \mathbb{Q} is countable to prove that $\mathbb{N} \times \mathbb{N}$ is countable.
(6)

Arrange the pairs (m, n) with $m, n \in \mathbb{N}$ is an infinite array:

The Cantor method of going up and down the diagonals allows us to turn this into a single list: $(1,1),(1,2),(2,1),(3,1),(2,2),(1,3),(1,4),(2,3),(3,2),(4,1), \ldots$ Then, we define a bijection from \mathbb{N} to $\mathbb{N} \times \mathbb{N}$ by sending n to the $n^{\text {th }}$ pair in this list.
X. Use congruence to prove that 3 divides $n^{3}+2 n$ for any integer n.
(6)

If $n \equiv 0 \bmod 3$, then $n^{3}+2 n \equiv 0^{3}+2 \cdot 0 \equiv 0 \bmod 3$.
If $n \equiv 1 \bmod 3$, then $n^{3}+2 n \equiv 1^{3}+2 \cdot 1 \equiv 1+2 \equiv 0 \bmod 3$.
If $n \equiv 2 \bmod 3$, then $n^{3}+2 n \equiv 2^{3}+2 \cdot 2 \equiv 8+4 \equiv 12 \equiv 0 \bmod 3$.
In any case, $n^{3}+2 n \equiv 0 \bmod 3$, so $n^{3}+2 n$ is divisible by 3 .

