Math 1823 homework

1. (due $9 / 5$) $1.1 \# 12,15,19,47-53$
2. (9/5) Draw a diagram (with explanation, of course) illustrating $\cot (t)$ and $\csc (t)$, analogous to our geometric interpretation of $\tan (t)$ and $\sec (t)$.
3. (9/5) 1.3 \# 6-7, 13-16, 19 (complete the square), 22, 37, 44, 49, 52-54, 57-59, 61(b), 62-64
4. $(9 / 5)$ Calculate the slopes of the tangent lines to the graph of $y=x^{3}$ as follows.
(a) Let x_{0} be a fixed positive x-value, and let $M(h)$ be the function of h that is the slope of the line between $\left(x_{0}, x_{0}^{3}\right)$ and $\left(x_{0}+h,\left(x_{0}+h\right)^{3}\right)$. Calculate $M(h)$, obtaining the expresssion

$$
M(h)=\left(3 x_{0}^{2}+3 h x_{0}+h^{2}\right) \frac{h}{h} .
$$

(b) Calculate (by completing the square) that $h^{2}+3 x_{0} h+3 x_{0}^{2}=\left(h+\frac{3 x_{0}}{2}\right)^{2}+\frac{3 x_{0}^{2}}{4}$
(c) For the graph $y=h^{2}$ in the y - h plane, what is the value of y when $h=\frac{3 x_{0}^{2}}{2}$?
(d) Starting from the graph $y=h^{2}$ in the y - h plane, apply horizontal and vertical translation to the expression in (b) to produce the graph of $y=M(h)$. The graph will be a parabola, except that the point where the parabola meets the y-axis is missing. Determine the y-coordinate of this point.
(e) Explain as clearly as you can, making use of the graph of $y=x^{3}$ and the graph in (d), why the y-coordinate found in (d) should be the slope of the tangent line to $y=x^{3}$ at the point $\left(x_{0}, x_{0}^{3}\right)$.
5. (9/5) (Optional. Do this problem only if you think it is fun.) Calculate the slopes of the tangent lines to the graph of $y=x^{3}$ without using a limit argument, as follows.
(a) Draw a non-tangent, but almost tangent line ℓ_{m} through the point $\left(x_{0}, x_{0}^{3}\right)$ for a typical positive x-value x_{0}. Using a sketch of the graph of $y=x^{3}$, convince yourself that ℓ crosses $y=x^{3}$ in three points (one of them with x negative).
(b) Let m be the slope of ℓ_{m}. Verify that an equation for ℓ_{m} is $y=x_{0}^{3}+m\left(x-x_{0}\right)$.
(c) The crossing points of ℓ_{m} and $y=x^{3}$ occur where $x^{3}=x_{0}^{3}+m\left(x-x_{0}\right)$ (why?). Use the algebraic factorization $x^{3}-x_{0}^{3}=\left(x-x_{0}\right)\left(x^{2}+x x_{0}+x_{0}^{2}\right)$ to write this equation as $\left(x-x_{0}\right)\left(x^{2}+x x_{0}+\left(x_{0}^{2}-m\right)\right)=0$.
(d) Observe that ℓ_{m} becomes tangent to $y=x^{3}$ when two of the crossing points merge into one, that is, when the equation in (c) has $x=x_{0}$ as a double root. Since x_{0} already occurs once as the root of the factor $x-x_{0}$, it will be a double root of the equation in (c) exactly when it is a root of $\left(x^{2}+x x_{0}+\left(x_{0}^{2}-m\right)\right)=0$. When x_{0} satisfies this equation, what must m be?

