Math 1823 homework

6. (9/12) $2.2 \# 5,6,9,23-30$
7. (9/12) 2.3 \# 10, 19-22, 25, 26, 28, 37, 38
8. $(9 / 12)$ Be able to state the Squeeze Theorem.
9. (9/28) $2.4 \# 3,4,13,20,22,23$
10. (9/28) 2.5 \# 17, 19
11. $(9 / 28) 2.4 \# 29,30,38$
12. (9/28) 2.5 \# 42-44, 61
13. (9/28) 2.6 \# 9, 10, 15, 16
14. $(9 / 28)$ Consider the area πr^{2} of a circle of radius r. Suppose you increase the radius to $r+h$.
15. Draw the circles of radius r and $r+h$. The region between them is a circular strip of width h. What are its inner and outer circumferences?
16. If you straighten the circular strip out to a rectangle that has width h and length $2 \pi r$, will it crinkle or rip? What is the difference $E(h)$ between the area of the circular strip and the area of the rectangle?
17. Write $\frac{A(r+h)-A(r)}{h}$ in the form $m+\frac{E(h)}{h}$. Take the limit as $h \rightarrow 0$ to determine the rate of change of A when the radius is r. Can you interpret this geometrically in terms of the area of an expanding circle?
18. The volume of a sphere is $4 \pi r^{3} / 3$. Use $\frac{V(r+h)-V(r)}{h}$ to work out the rate of change of the volume as the radius increases. By interpreting this geometrically in terms of the volume of an expanding sphere, can you deduce a formula for the surface area of a sphere?
19. (10/12) Determine the rate of change of the cosine function by drawing a careful diagram of the points $(\cos (a), \sin (a))$ and $(\cos (a+h), \sin (a+h))$ and nearby distances and angles, then using the diagram to argue that for h near $0, \cos (a+h)-\cos (a)$ is very near $-\sin (a) h$, and then (with a bit of hand waving) obtaining $\lim _{h \rightarrow 0} \frac{\cos (a+h)-\cos (a)}{h}$ from this observation.
