Math 1823 homework

16. (10/12) Recall that the rate of change of a function $f(x)$ at the x-value a is the unique number m for which $f(a+h)=f(a)+m h+E(h)$ with $\lim _{h \rightarrow 0} \frac{E(h)}{h}=0$ (if such a number m exists). Use this fact to find the rate of change of the function $\frac{1}{x}$ at a number a as follows.
17. Fill in the missing details of the following calculation:

$$
\begin{gathered}
\frac{1}{a+h}=\frac{1}{a}+\frac{1}{a+h}-\frac{1}{a}=\frac{1}{a}+\frac{-h}{a^{2}+a h} \\
=\frac{1}{a}-\frac{h}{a^{2}}+\frac{-h}{a^{2}+a h}+\frac{h}{a^{2}}=\frac{1}{a}-\frac{1}{a^{2}} h+\frac{a h^{2}}{a^{4}+a^{3} h} .
\end{gathered}
$$

2. Letting $E(h)=\frac{a h^{2}}{a^{4}+a^{3} h}$, check that $\lim _{h \rightarrow 0} \frac{E(h)}{h}=0$.
3. Deduce that the rate of change of $\frac{1}{x}$ at the x-value a is $-\frac{1}{a^{2}}$.
4. (10/12) $3.2 \# 8,9,10,13$
5. (10/12) For these, use the fact that $f^{\prime}(x)=\lim _{z \rightarrow x} \frac{f(z)-f(x)}{z-x}: 3.2 \# 19,21,28,29$ [use a different letter from z if you wish]
6. (10/12) For these, use the fact that $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}: 3.2 \# 19,21,28,29$
7. (10/12) 3.3 as many as needed from \# 1-20, 23-32, 35-39
8. (10/12) $3.3 \# 33$ (use $(1 / f)^{\prime}=-f^{\prime} / f^{2}$), 40 (simplify first), 41-42, 53, 58, 62-64, 67-69, 71-74, 87-88
9. $(10 / 12)$ Use $(1 / f)^{\prime}=-f^{\prime} / f^{2}$ or the Quotient Rule, plus the facts that $\frac{d}{d x}(\sin (x))=$ $\cos (x)$ and $\frac{d}{d x}(\cos (x))=-\sin (x)$, and any necessary trigonometric identities, to verify that $\tan ^{\prime}(x)=\sec ^{2}(x), \cot ^{\prime}(x)=-\csc ^{2}(x), \sec ^{\prime}(x)=\sec (x) \tan (x)$, and $\csc ^{\prime}(x)=$ $-\csc (x) \cot (x)$.
10. (10/26) as many as needed from 3.5 \# 1-16, 21-24.
11. (10/26) 3.5 \# 36-44, 46, 47
12. (10/26) as many as needed from 3.6 \# 7-46, including at least $3.6 \# 25,26,31-42$
13. (10/26) $3.6 \# 55,56,63,64,71$
