
Summary of Haskell classes

For more detail see section 6 of the Haskell 98 Language and Libraries Revised Report.

1. Input-output

Show

– has show function that converts value to string

Read

– has read function that converts string to value

2. equality and order

Eq

– has concept of equality
– has == and /= functions

Ord

– extends Eq
– has concept of order
– has <, <=, >, >= and compare functions

3. numerical classes

Num (for “numeric”)
– extends Eq, Show

– includes the types Int, Integer, Float, Double

– has concept of arithmetic operations
– has +, -, *, abs, and fromInteger functions

Integral

– includes the types Int, Integer

– has concept of remainder
– has quot, rem, div, mod and toInteger functions

Fractional

– extends Num
– includes the types Float, Double

– has concept of division
– has /, recip, and fromRational functions

Floating

– extends Fractional
– includes the types Float, Double

– has trig functions, exponentials and logarithms, etc.
– has exp, log, sqrt, sin, cos, ..., asin, ..., sinh, ..., asinh, ...

1

4. classes from category theory

Monad

– includes the types IO, Maybe

– a very general kind of type that includes many common design patterns of Haskell

MonadPlus

– includes the types IO, Maybe

– has a bit of additional structure beyond the basic Monad class

Functor

– has concept of map
– includes types [a], Maybe, trees and other data structures
– has a function fmap :: Functor a => (b -> c) -> a b -> a c

– fmap should satisfy fmap(f . g) = fmap f . fmap g

5. miscellaneous

Enum (for “enumeration”)
– includes many common types
– has concepts of predecessor and successor
– has pred and succ functions

Bounded

– includes many common types
– has concepts of predecessor and successor
– has maxBound and minBound functions
> maxBound :: Int

2147483647

> minBound :: Int

-2147483648

> maxBound :: Integer

ERROR - Cannot infer instance

*** Instance : Bounded Integer

*** Expression : maxBound

2

