
A first look at Haskell functions

Functions are fundamental to Haskell, and it provides us with many ways to define them.
First, we must look at how to define their types.

The basic form of a function type definition:

f :: a -> b

which says that f is a function that takes objects of type a to objects of type b. For example,
we might see

f :: Int -> (Int, String)

which means, of course, that f takes an integer variable and returns an ordered pair whose
first entry is an integer and whose second entry is a string. Now is a good time to list some
of the built-in types that Haskell has:

Int integer in limited range, approximately -2 billion to 2 billion
Integer integer of unlimited size
Bool a boolean value, either True or False
Float floating-point number
Char a single character
String a list of Char values, i. e. String is [Char]

Now is also a good time to mention that types begin with capital letters, but functions and
most other structures begin with small letters.

A more mysterious-looking type definition is something such as

exOr :: Bool -> Bool -> Bool

This literally means

exOr :: Bool -> (Bool -> Bool)

This uses the exponential law that says that functions of two variables X×Y → Z correspond
to functions X → Functions(Y, Z), by thinking of a two-variable function f as a function
that takes x to the function that sends y to f(x, y).

In some sense, all functions in Haskell are functions of one variable, which may take
values that are functions. Thus a type

f :: a -> b -> c -> d

means f :: a -> (b -> (c -> d)), a function that takes an element of type a to a function
which takes an element of type b to a function of type c -> d.

Let’s explore this further by examining some of the ways that we and define exOr, the
“exclusive or” function. One way to complete the definition started above is:

exOr :: Bool -> Bool -> Bool

exOr x y = ( x || y ) && not ( x && y )



Here, ||, &&, and not are the Haskell notations for the logical “or”, the logical “and”, and
the logical “not”. The effect of this definition is that Haskell will evaluate an expresssion
such as exOr True False as ( True || False ) && not ( True && False ), eventually
simplifying to the value True.

Since the type Bool -> Bool -> Bool really means Bool -> (Bool -> Bool), we can
think of exOr as a function that takes a Bool value and gives us a function of type Bool ->

Bool. That is, each of the two values exOr True and exOr False is a function of type Bool

-> Bool, so we can define exOr by giving the two functions exOr True and exOr False.
exOr :: Bool -> Bool -> Bool

exOr True x = not x

exOr False x = x

Haskell provides several different syntactic styles that can improve readability. For ex-
ample, there is an if ... then form:

exOr :: Bool -> Bool -> Bool

exOr x y = if x == True then not y else y

Note that logical equality is given by double equals signs “==”.

A very nice format that I tend to use whenever possible is the use of “guards”. This basically
allows you to give case-by-case definitions. We can define exOr using guards by

exOr :: Bool -> Bool -> Bool

exOr x y

| x == True = not y

| otherwise = y

You can list any number of cases. It is necessary to indent the vertical bars at least one space
(two spaces seems to be a fairly common indentation for Haskell). Unlike many languages,
Haskell is sensitive to the use of blank space in its layout. This allows it to parse without
requiring lots of braces and semicolons to demarcate the statements.

A very useful syntactic device is the “lambda” notation for functions. This is essentially
the “mapsto” symbol 7→, and allows us to define a function without giving it a name. The
general format is \x -> f(x). Thus we write exOr without naming it as
\x y -> ( x || y ) && not ( x && y )

And we can define exOr purely at the functional level by writing
exOr :: Bool -> Bool -> Bool

exOr = \x y -> ( x || y ) && not ( x && y )

A very convenient and readable syntax for defining complicated functions is the where con-
struction. For example, suppose you want a function that takes two integers and returns
their maximum, along with the number of times it appears, as an ordered pair. It would
be convenient to define functions that take the maximum (of course, Haskell has a built-in
maximum function max, but pretend that it did not) and count its number of occurrences.
If we do not need this for anything else, it is simpler just to make these “local” definitions.
The where construction enables us to do this as follows:



maxCount :: Int -> Int -> (Int,Int)

maxCount a b = (maxTwo a b, num a b)

where

maxTwo a b

|a > b = a

|otherwise = b

num a b

|a == b = 2

|otherwise = 1

The where must be indented, and everything within the where definitions must be indented
at least that amount. Notice that when defining the auxiliary functions maxTwo and num

within the where structure, we do not need to give their types. These definitions will be
local to the where region, so will not be defined anywhere else in your program.


