Getting started on the Haskell HUGS interpreter

The HUGS Haskell interpreter works similarly to the GAP interpreter. When you start it
up, you will see a prompt that looks like:

Hugs>

As with GAP, you can sit and type commands at the prompt, but for most purposes, it is
best to edit your program file on an editor and read it into the interpreter. If your file is
named program.hs, enter

Hugs> : load program.hs

to instruct the interpreter to read the file. The : 1oad can be abbreviated as : 1, so you only
need to enter : 1 program.hs . If you make changes and want to reload an edited version
of program.hs, all you need to enter is : r (which is short for : reload) and it will load
whatever version of program.hs is currently written on the hard drive.

To quit, enter : q, and for a complete list of the interpreter commands enter : 7 .
Now, at the prompt, try entering the following:

Hugs> 54 + 3

Hugs> 5% (4+3)

Hugs> 275000

Hugs> sqrt 2
Haskell understands ordered pairs. When you enter

Hugs> (5, 3)

Haskell’s response is just to print out (5, 3). Why? Because like GAP, Haskell is an evaluator.
When you give it (5,3), it evaluates it and finds that the value is (5, 3).

If £ is a function and x is a variable, then f x is Haskell for f(x). Haskell will correctly
parse f (x), but the convention is not to use parentheses unless they are necessary. Try these
two useful functions:

Hugs> fst (5,3)
Hugs> snd (5,3)
Now enter
Hugs> fst (5,3,2)
You should get the following error message:

ERROR - Type error in application
x*x*x Expression : fst (5,3,2)

*xx Term : (5,3,2)

*xxx Type : (c,d,e)

**x*x Does not match : (a,b)

Haskell is very strongly typed, and has detected a type error. Let’s go through the parts of
the message. First it tells the entire expression that caused the error, then the particular
term in it, (5,3,2). It then gives the type of (5,3,2) as being (c,d,e), i. e. a triple of any
kind of entries, and finally says it does not match the expected type (a,b) of an ordered
pair. The fst function only accepts ordered pairs, although their entries may be of any type.
Try entering the following to see how “polymorphic” (accepts different types in inputs) the
fst function is:

Hugs> fst (5,(5,3,2))
Hugs> fst ((5,3,2),(2,4,8))
Hugs> fst ("A character string", (2,4,8))
Now, let’s ask Haskell the type of fst. Enter
Hugs> :t fst
Haskell evaluates this to
fst :: (a,b) > a

The symbol :: is read as “is of type”. The “arrow” -> has the usual function meaning
that it does is mathematics. This line tells us that fst is of type a function that takes an
element of the form (a,b), that is, an ordered pair where the first and second elements have
arbitrary types, and not necessarily of the same type, and returns an element of the same
type as the first entry of the ordered pair.

Now, let’s look at compositions of functions. Try
Hugs> snd fst ((1,2),(3,4))
We might expect this to evaluate to 2, but instead we get

ERROR - Type error in application

+ Expression : snd fst ((1,2),(3,4))

**xx Term : fst

xx*x Type : (g,h) > g

**%*x Does not match : (a,((b,c),(d,e)) -> f)

This show that Haskell looked at snd and was expecting it to be followed by an ordered
pair, but instead got fst. The type that was encountered, that is the type of fst, was
(g,h) -> g. The expected type, (a,((b,c),(d,e)) -> f), is an ordered pair. Rather
than describing the expected type as (a,b), it gives the second entry as ((b,c),(d,e)) ->
f, that is, a function that takes ordered pairs of ordered pairs and returns an object of a
possibly different type. I don’t know why it is given this way.

Let’s fix the error. We already know that Haskell understands grouping with parentheses,
so let’s try

Hugs> snd (fst ((1,2),(3,4)))

This works. But a more “functional” solution would be to use a composition of snd and
fst. Haskell’s composition symbol is the period, so if we enter

Hugs> (snd . fst) ((1,2),(3,4))
we also get the correct evaluation.
Check the type of snd . fst by entering
Hugs> snd . fst
The evaluation is
snd . fst :: ((a,b),c) > b

which is exactly correct.

