
Some common list functions

1. Selecting parts of lists

head :: [a] -> a return the first element of a list

tail :: [a] -> [a] return all but the first element of a non-empty list

last :: [a] -> a return the last element of a list

init :: [a] -> [a] return all but the last element of a non-empty list

take :: Int -> [a] -> [a] return the first n elements of a list
take 5 (iterate (\x -> x^ 2) 2) = [2,4,16,256,65536]

drop :: Int -> [a] -> [a] drops the first terms of a list
drop 2 [[5,2,7],[],[0,1],[1..3]] = [[0,1],[1,2,3]]

2. Getting information about a list

length :: [a] -> Int

elem :: Eq a => a -> [a] -> Bool tell whether the element is a term of the list
elem [] [[5,2,7],[],[0,1],[1..3]] = True

(!!) :: [a] -> Int -> a get the nth element of a list, where the first element is the
0th

[1..10]!!7 = 8

and :: [Bool] -> Bool logical conjunction

or :: [Bool] -> Bool logical disjunction

sum :: Num a => [a] -> a

product :: Num a => [a] -> a

3. Combining lists

(++) :: [a] -> [a] -> [a] join two lists into one
[5,2,7] ++ [0,1] = [5,2,7,0,1]

concat :: [[a]] -> [a] join list of lists into one
concat [[5,2,7],[],[0,1],[1..3]] = [5,2,7,0,1,1,2,3]

zip :: [a] -> [b] -> [(a,b)] return pairs of corresponding elements of two lists
zip [1..4] "abcdefgh" = [(1,’a’),(2,’b’),(3,’c’),(4,’d’)]

unzip :: [(a,b)] -> ([a],[b]) reverses the zipping process
unzip [(1,’a’),(2,’b’),(3,’c’),(4,’d’)] = ([1,2,3,4],"abcd")

1

4. Creating and manipulating lists

replicate :: Int -> a -> [a] make a list of copies of one element
replicate 3 ’Z’ = "ZZZ"

reverse :: [a] -> [a] return list in reverse order

sort :: Ord a => [a] -> [a] (from the List library) return a sorted list

splitAt :: Int -> [a] -> ([a],[a]) split the list into the first n and the rest
splitAt 4 "abcdefg" = ("abcd","efg")

nub :: Eq a => [a] -> [a] (from the List library) remove duplicates
nub [1,3,1,4,3,3] = [1,3,4]

iterate :: (a -> a) -> a -> [a] return an infinite list [x, f(x), f(f(x)), ...]

take 5 (iterate (\x -> x^ 2) 2) = [2,4,16,256,65536]

5. Using functions on lists

map :: (a -> b) -> [a] -> [b] apply a function to each term of a list
map sqrt [1..5] = [1.0, 1.41421, 1.73205, 2.0, 2.23607]

filter :: (a -> Bool) -> [a] -> [a] select elements of a list that satisfy a boolean
function
filter (\x -> length x > 2) [[5,2,7],[],[0,1],[1..3]] = [[5,2,7],[1,2,3]]

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] zip, then apply a function to each
pair
zipWith (*) [2,3,4] [5,5,0] = [10,15,0]

takeWhile :: (a -> Bool) -> [a] -> [a] returns a list containing elements from
the front of the list while the condition is satisfied.
takeWhile (<1000) (iterate (\x -> 2*x) 2) = [2,4,8,16,32,64,128,256,512]

foldr1 :: (a -> a -> a) -> [a] -> a “fold” the list starting at the right
foldr1 (-) [1,2,3,4] = (-2) (calculates 1-(2-(3-4)))

foldr :: (a -> b -> b) -> b -> [a] -> b “fold” the list starting at the right, using
a starting value
foldr (-) 5 [1,2,3,4] = 3 (calculates 1-(2-(3-(4-5))))
foldr (+) 0 = sum

foldr (++) [] = concat

foldr (&&) True = and

foldr ((:).f) [] = map f

foldr (\x xs -> if p x then x:xs else xs) [] = filter p

2

