
Recursive functions

We have seen how to define and use functions in Haskell, and how to work with lists. Some
very nice things happen when one combines the two using recursion. A recursive function
definition gives the function in terms of itself. Let’s start with a simple example. Suppose
we want to count the number of times an element occurs in a list, that is, we want to define
a function

elemCount :: Eq a => a -> [a] -> Int

so that elemCount x aList returns the number of appearances of x in the alist. We
already know a quick way to do this using list manipulation:

elemCount x aList = length ( filter ( x == ) aList )

but we will define it recursively using pattern matching:
elemCount x [ ] = 0

elemCount x (y:ys)

| x == y = 1 + elemCount x ys

| otherwise = elemCount x ys

Pattern matching is basically giving cases of the function. Haskell looks through the patterns
and applies the first one that fits what it is trying to evaluate. In this case, the first line
says that if the list is empty, then elemCount x aList is 0. If the list is nonempty, then
Haskell proceeds to the next line. The pattern of the list is (y:ys), where y is the head of
the list and ys is the remainder of the list, which may be empty. In case the head y of the
list matches x, the count should be one more than the number of appearances of x in ys.
Otherwise, that is, if not x == y, the count is just the number of appearances of x in the
remainder ys.

Let’s think through how the interpreter would evaluate the expression elemCount 3 [3, 1,

0, 3, 7]. The first pattern that matches is elemCount x (y:ys) with x equal to 3, y equal
to 3, and ys equal to [1, 0, 3, 7]. Since 3 == 3 is true, the expression elemCount 3 [3,

1, 0, 3, 7] is evaluated to 1 + elemCount 3 [1, 0, 3, 7]. Continuing, we have
1 + elemCount 3 [1, 0, 3, 7]

1 + elemCount 3 [0, 3, 7]

1 + elemCount 3 [3, 7]

2 + elemCount 3 [7]

2 + elemCount 3 [ ]

2 + 0

2



Here is a more sophisticated example. Suppose we want a function that will sort a list
of orderable things (the Prelude has a built-in sort function). Among the many sorting
algorithms is the insertion sort. The idea is to take your list of things and build a new list,
inserting each of the elements so that the new list is always in order. We start by writing
a function that takes an element and a list that is already in order, and inserts the new
element in the right place:

insertElement :: Ord a => a -> [a] -> [a]

insertElement x [ ] = [x]

insertElement x (y:ys)

| x <= y = (x:y:ys)

| otherwise = y: ( insertElement x ys )

The Ord a signifies that the type a must have a concept of order. Now, the insertion sort is
recursive, making use of insertElement:

iSort :: Ord a => [a] -> [a]

iSort [ ] = [ ]

iSort (x:xs) = insertElement x ( iSort xs )

Let’s think through how the interpreter would evaluate this expression:
iSort [2,2,1,3]

= insertElement 2 (iSort [2,1,3])

= insertElement 2 (insertElement 2 (iSort [1,3]))

= insertElement 2 (insertElement 2 (insertElement 1 [3]))

= insertElement 2 (insertElement 2 (insertElement 1 (insertElement 3 [ ])))

= insertElement 2 (insertElement 2 (insertElement 1 ([3])))

= insertElement 2 (insertElement 2 ([1,3]))

= insertElement 2 (1 : insertElement 2 ([3]))

= insertElement 2 (1 : [2, 3])

= insertElement 2 ([1, 2, 3])

= 1 : insertElement 2 ([2, 3])

= 1 : [ 2, 2, 3])

= [ 1, 2 , 2, 3])

Here is another example, the unique function that returns the elements of a list that appear
only once:

unique :: Eq a => [a] -> [a]

unique [ ] = [ ]

unique (x:xs)

| elem x xs = unique ( filter ( x /= ) xs )

| otherwise x : (unique xs)

Notice the Haskell notation /= for not equals.

By the way, unique has a one-line definition using filtration:
unique :: Eq a => [a] -> [a]

unique xs = [ x | x <- xs, length ( filter ( x == ) xs ) == 1 ]



Here is a famous application of Haskell recursion, the one the a Haskell salesman would
show you. One of the most powerful sorting methods is the quicksort algorithm. In most
programming languages, setting up a quicksort is a tricky little exercise. The Haskell version
is a two-line function using filtration and recursion:

qSort :: Ord a => [a] -> [a]

qSort [ ] = [ ]

qSort (x:xs)

= qSort [ y | y<- xs, y <= x ] ++ [x] ++ qSort [ y | y<- xs, y > x ]

Now, let’s look at some of our continued fraction calculations recursively. Here is a short
Haskell script:

import Prelude

import Ratio

integerPart :: Rational -> Integer

integerPart x = quot (numerator ( x ) ) (denominator ( x ))

modZPart :: Rational -> Rational

modZPart x = x - toRational( integerPart x )

cFrac :: Rational -> [Integer]

cFrac r

| denominator r == 1 = [numerator r]

| r > 0 = (integerPart r) : cFrac( 1/(modZPart r))

| r < 0 = map (\n -> -n) (cFrac (-r))

unCFrac :: [Integer] -> Rational

unCFrac [n] = toRational n

unCFrac (n:ns) = (toRational n) + 1/unCFrac(ns)

First, we import Prelude and Ratio, the latter being the (rather minimal) library for work-
ing with rational numbers. The Ratio library includes the numerator and denominator

functions.

The integerPart function is defined using the integer quotient function quot, which is
exactly like the GAP QuoInt function. In defining modZPart, we have to convert the integer
part back to a rational number using the built-in toRational function.

cFrac is defined recursively exactly as we define it mathematically. For integral rational
numbers, we just take the numerator as the unique term. A fine point here is that denom-
inators of rational numbers are always positive. Check this by importing Ratio and then
have Haskell evaluate the rational number 3/(−2) using Haskell’s slightly clunky percent
notation for a rational number:

Hugs> 3 % -2

(-3) % 2



To finish the definition of cFrac, for positive r, we use the mathematical definition, and for
negative r, we reduce to the positive case. unCFrac is also just defined the way we would
do it mathematically.

There are many uses of recursion. Here is one common device, for situations when we want
to repeat something until it no longer has any effect. The problem we will consider is the
normal form of finitely generated abelian groups. There are a couple of standard forms for
finitely generated abelian groups. One is Z ⊕ · · · ⊕ Z ⊕ Z/m1 ⊕ Z/m2 ⊕ · · · ⊕ Z/mk where
mi+1|mi for each i > 1. Thus, for example, you can write Z/2⊕Z/4⊕Z/8⊕Z/9⊕Z/10 as
Z/360⊕ Z/4⊕ Z/2⊕ Z/2. How can we attain this form algorithmically?

A special case of the normal form is Z/a⊕ Z/b ∼= Z/ lcm(a, b)⊕ Z/ gcd(a, b). There are, of
course, many ways to see this isomorphism. Here is a way that will fit in well with some
later examples. If an abelian group A is generated by n elements, then there is a surjective
homomorphism Zn → A. Math shows that its kernel is a free abelian group of some rank
m ≤ n. We can think of this as an exact sequence

0 → Zm φ→ Zn → A → 0 .

If there are bases {v1, . . . , vn} of Zm and {w1, . . . , wn} of Zn such that φ(vi) = ni · wi for
i ≤ m, then A ∼= Z/n1⊕ · · ·⊕Z/nm⊕Z⊕ · · ·⊕Z, and if A has this form then we can easily
construct a corresponding φ : Zm → Zn just by sending Zn → A taking ei to a generator of
Z/mi, and φ(ei) = miei, where the ei are the standard basis vectors. In the particular case
of Z/a⊕ Z/b, we have

0 → Z2 φ→ Z2 → Z/a⊕ Z/b → 0 ,

where φ(e1) = ae1 and φ(e2) = be2. Its matrix with respect to the standard bases is

(
a 0
0 b

)
.

Now, we can do any row and column operations on this matrix, achieving a matrix for φ
with respect to some other bases. In particular, putting d = gcd(a, b), we have(

a 0
0 b

)
→

(
a d
0 b

)
→

(
a d

(−b/d)a 0

)
→

(
0 d

(−b/d)a 0

)
→

(
− lcm(a, b) 0

gcd(a, b)

)
,

the last by a column interchange.

So here is our algorithm:

1. Represent an initial Z⊕ · · ·Z⊕Z/a1 ⊕Z/a2 ⊕ · · · ⊕Z/ak as a list [0, . . . , 0, a1, . . . , ak].

2. Do replacement moves that replace pairs [ai, ai+1] by [lcm(ai, ai+1), gcd(ai, ai+1)].

3. Whenever some ai+1 does not divide ai, a (nontrivial) replacement move will be possi-
ble.

4. A replacement move decreases [a1, . . . , ak] in the lexicographical ordering, so this pro-
cess cannot continue forever. Therefore it must terminate with ai+1 dividing ai for
every i.



We may assume that all the ai are nonzero, and the first step is to write a “combing” process
that makes one round of moves:

comb :: [Int] -> [Int]

-- Assumes that all integers are nonzero, since gcd 0 0 is undefined

comb [ ] = [ ]

comb [n] = [n]

comb (m:n:rest) = (lcm m n) : (comb (gcd m n: rest))

Here is what comb does in the case of our earlier example Z/2⊕ Z/4⊕ Z/8⊕ Z/9⊕ Z/10:
Abelian> comb [2,4,8,9,10]

[4,8,18,10,1]

Abelian> comb $$

[8,36,10,2,1]

Abelian> comb $$

[72,20,2,2,1]

Abelian> comb $$

[360,4,2,2,1]

giving Z/360⊕Z/4⊕Z/2⊕Z/2⊕Z/1, with Z/1 the trivial quotient Z/(1 ·Z) = {0}. Notice
the convenient hugs interpreter notation $$ for “the result of the previous evaluation”. Now,
we use guards to continue our recursion until replacement moves have no effect:

normalForm :: [Int] -> [Int]

normalForm list

| nonzeros == comb nonzeros = nonzeros ++ zeros

| otherwise = zeros ++ normalForm ( (comb nonzeros) + zeros )

where

zeros = [ x | x <- list, x == 0 ]

nonzeros = [ x | x <- list, x /= 0, x /= 1 ]

A final note is that the $$ notation does not work in scripts, because there is no “order” of
the statements. In evaluating functions, Haskell might carry out the steps in any number of
different possible orders, so there is no “previous” statement when one executes a script.


