Math 6833 assignments

22. Use recursion to define functions orList : : [Bool] -> Bool and andList :: [Bool] -> Bool, where orList is true when at least one of the entries in the list is true, and andList is true when all of them are true.
23. Use recursion to define the concat function in terms of the ++ function. (If you want to test it on the interpreter, you will need to give it a different name from concat, since there is already a built-in concat function.)
24. Write a function remove :: Eq a \Rightarrow [[a] -> [a] -> [a] such that remove xs ys gives returns a list of all elements of the list ys that are not elements of xs. Write (at least) two versions: (1) using recursion, not using the elem function, and (2) using list comprehension involving the elem function (this enables you to give a one-line definition).
25. A list list1 is called a sublist of another list list2 if the elements of list1 occur in order- but not necessarily as a block-in list2. For example, "Ache." is a sublist of "A character string." Write a recursive function subList : : Eq a => [a] -> [a] -> Bool that tests whether a first list is a sublist of a second list.
26. Recall that a partition of n elements is a sum $n=p_{1}+p_{2}+\cdots+p_{m}$ with $p_{1} \geq p_{2} \geq$ $\cdots \geq p_{m} \geq 1$. For example, the seven partitions of 5 are $5,4+1,3+2,3+1+1$, $2+2+1,2+1+1+1$, and $1+1+1+1+1$. Define $P(n)$ to be the number of partitions of n.
(a) Define $P(n, k)$ to be the number of partitions of n for which $k \geq p_{1}$, in particular $P(n)=P(n, n)=1+P(n, n-1)$. Prove that if $k \leq n-1$ then $P(n, k)=P(n, k-$ 1) $+P(n-k, k)$.
(b) Write a Haskell function
$\mathrm{p}::$ Integer -> Integer $->$ Integer so that p n k equals $P(n, k)$.
(c) Use (b) to write a Haskell function
partitions :: Integer -> Integer so that partitions n equals $P(n)$.
27. Download the Haskell script "binomial.hs" from the course website and test it. If you find any errors, correct them.
