Math 6833 assignments

31. Use foldr1 to define the composition function
compose :: (a -> a) -> Int -> (a -> a), where compose $f \mathrm{n}$ is the function that composes f with itself $n-1$ times (that is, compose $f 3$ is $f \circ f \circ f$).
32. Load the module Matrix (on the links page) and use foldr to define
matrixPower :: Matrix -> Int -> Matrix, where matrixPower mat n is the matrix mat raised to the $\mathrm{n}^{\text {th }}$ power. (Hint: one solution is a foldr using the function ($\backslash \mathrm{y} \rightarrow$ matrixProduct mat) applied to the list [1. .n]. Another solution uses foldr1 to fold matrixProduct into a list that consists of replicated copies of mat.
33. Determine what the following function does, where splitString is the function from problem 31:
```
mystery str = init ( foldr f "" (splitString str) )
    where
    f x xs = x ++ " " ++ xs
```

34. Determine what the following function does:
foldhappy $\mathrm{n}=$ foldr ((:). (morefold n$)$) [] [1..n] where
morefold n i $=$ foldr ((:).(matcher i)) [] [1..n]
matcher i $j=$ if $i==j$ then 1 else 0
35. Download the module Surface.hs.
(i) Define some examples of surfaces, including a Seifert surface for some knot, and use them test some of the functions in Surface.hs.
(ii) Write functions
obSurface :: Int -> Int -> Surface
nbSurface :: Int -> Int -> Surface
that construct orientable and nonorientable surfaces of genus g with k boundary components.
(iii) Compare your obSurface and nbSurface with the ones in Surface.hs. If yours are better, please email them to me.
