I. Analyze the convergence behavior of the power series $\sum_{n=1}^{\infty} \frac{1}{nb^n} (x-a)^n$, where a and b are constants with b > 0. That is, determine its center, radius of convergence, and for every real number x determine whether the series converges absolutely, converges conditionally, or diverges.

- II. State the Comparison Test, and use it to verify that $\sum_{n=1}^{\infty} \frac{1}{n^{1+1/n}}$ diverges. (Hint: First verify that $\lim_{n \to \infty} n^{1/n} = 1.$)
- III. Graph the equation $r = \cos(\theta/3)$ for $0 \le \theta \le 6\pi$, first in the θ -r plane, then as a polar equation in the x-y (5) plane.

IV. State the Limit Comparison Test, and use it to verify that $\sum_{n=1}^{\infty} (\sqrt[n]{2} - 1)$ diverges. (Hints: Use L'Hôpital's (7) Rule to compare it to $\sum \frac{1}{n}$. You may need the facts that $\lim_{n \to \infty} 2^{1/n} = 1$ and $\frac{d(a^x)}{dx} = a^x \ln(a)$.)

- **V**. Give examples of the following:
- (7)
 - 1. A divergent series whose terms limit to 0.
 - 2. A conditionally convergent series.
 - 3. A geometric series $\sum_{n=0}^{\infty} r^n$ that converges to π .
- **VI**. Give examples of the following:
- (6)
 - 1. A power series $\sum_{n=0}^{\infty} c_n x^n$ that converges only for x = 0.
 - 2. A power series $\sum_{n=0}^{\infty} c_n x^n$ whose radius of convergence is π .

VII. Derive these formulas expressing rectangular coordinates in terms of spherical coordinates: $x = \rho \sin(\phi) \cos(\theta)$, (3) $y = \rho \sin(\phi) \sin(\theta)$, $z = \rho \cos(\phi)$.

- VIII. In higher dimensions, say dimension n, there are vectors $\vec{e_1}, \vec{e_2}, \ldots, \vec{e_n}$ that play the roles of \vec{i}, \vec{j} , and \vec{k} . In (4) particular, $\vec{e_i} \cdot \vec{e_j} = 0$ when $i \neq j$, and $\vec{e_i} \cdot \vec{e_i} = 1$ for each i. Verify that if an n-dimensional vector \vec{v} equals $r_1\vec{e_1} + r_2\vec{e_2} + \cdots + r_n\vec{e_n}$, then $r_i = \vec{v} \cdot \vec{e_i}$ for each i.
- **IX**. Give examples of the following:
- (6)
 - 1. Vectors \vec{a} , \vec{b} , and \vec{c} for which $(\vec{a} \times \vec{b}) \times \vec{c} \neq \vec{a} \times (\vec{b} \times \vec{c})$.
 - 2. Nonzero vectors \vec{a} , \vec{b} , and \vec{c} for which $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ but $\vec{b} \neq \vec{c}$.

- **X**. Find an equation for the plane that contains the points (1, 2, 3), (1, 3, 4), and (2, 3, 5).
- (5)
- **XI**. A point moves according to the vector-valued function $\vec{r}(t) = e^t \vec{i} + e^{-t} \vec{j}$.
- (9)1. Sketch the path of the point, indicating the direction of motion. (Hint: How are x and y related?)
 - 2. Calculate the velocity vectors $\vec{r}'(t)$, the speed, and the unit tangent vector $\vec{T}(t)$.
 - 3. Use $a_T = \frac{\vec{r}'(t) \cdot \vec{r}''(t)}{\|\vec{r}'(t)\|}$ and $a_N = \frac{\|\vec{r}'(t) \times \vec{r}''(t)\|}{\|\vec{r}'(t)\|}$ to calculate the tangential and normal components of the acceleration vector $\vec{a}(t)$.
 - 4. When is the point speeding up? When is it slowing down?

XII. Write the general formula for the Taylor series of a function f(x) at x = a. Use it to calculate the Taylor (6) series of the function $f(x) = x^4$ at x = 2.

XIII. For the helix $\vec{r}(t) = 2\sin(t)\vec{i} + 3t\vec{j} + 2\cos(t)\vec{k}$: (8)

1. Calculate the unit tangent vector $\vec{T}(t)$, and use it to calculate the unit normal $\vec{N}(t)$.

2. Use the formula $\kappa = \frac{\|\vec{T}'(t)\|}{\|\vec{r}'(t)\|}$ to calculate the curvature. 3. Use the formula $\kappa = \left\|\frac{d\vec{T}}{ds}\right\|$ and the Chain Rule to calculate the curvature.

XIV. Bonus Problem: Let $u = 1 + \frac{x^3}{3!} + \frac{x^6}{6!} + \frac{x^9}{9!} + \cdots$, $v = x + \frac{x^4}{4!} + \frac{x^7}{7!} + \frac{x^{10}}{10!} + \cdots$, and $w = \frac{x^2}{2!} + \frac{x^5}{5!} + \frac{x^8}{8!} + \cdots$. (6) Each of these converges by comparison with the Maclaurin Series of e^x . Show that $u^3 + v^3 + w^3 - 3uvw = 1$.

(Hint: What is u'?)