I. Analyze the convergence behavior of the power series $\sum_{n=1}^{\infty} \frac{1}{n b^{n}}(x-a)^{n}$, where a and b are constants with
(7) $b>0$. That is, determine its center, radius of convergence, and for every real number x determine whether the series converges absolutely, converges conditionally, or diverges.
II. State the Comparison Test, and use it to verify that $\sum_{n=1}^{\infty} \frac{1}{n^{1+1 / n}}$ diverges. (Hint: First verify that
(7) $\lim _{n \rightarrow \infty} n^{1 / n}=1$.)
III. Graph the equation $r=\cos (\theta / 3)$ for $0 \leq \theta \leq 6 \pi$, first in the $\theta-r$ plane, then as a polar equation in the $x-y$ (5) plane.
IV. State the Limit Comparison Test, and use it to verify that $\sum_{n=1}^{\infty}(\sqrt[n]{2}-1)$ diverges. (Hints: Use L'Hôpital's
(7) Rule to compare it to $\sum \frac{1}{n}$. You may need the facts that $\lim _{n \rightarrow \infty} 2^{1 / n}=1$ and $\frac{d\left(a^{x}\right)}{d x}=a^{x} \ln (a)$.)
V. Give examples of the following:
(7)

1. A divergent series whose terms limit to 0 .
2. A conditionally convergent series.
3. A geometric series $\sum_{n=0}^{\infty} r^{n}$ that converges to π.
VI. Give examples of the following:
(6)
4. A power series $\sum_{n=0}^{\infty} c_{n} x^{n}$ that converges only for $x=0$.
5. A power series $\sum_{n=0}^{\infty} c_{n} x^{n}$ whose radius of convergence is π.
VII. Derive these formulas expressing rectangular coordinates in terms of spherical coordinates: $x=\rho \sin (\phi) \cos (\theta)$,
(3) $\quad y=\rho \sin (\phi) \sin (\theta), z=\rho \cos (\phi)$.
VIII. In higher dimensions, say dimension n, there are vectors $\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}$ that play the roles of $\vec{\imath}, \vec{\jmath}$, and \vec{k}. In
(4) particular, $\vec{e}_{i} \cdot \vec{e}_{j}=0$ when $i \neq j$, and $\vec{e}_{i} \cdot \vec{e}_{i}=1$ for each i. Verify that if an n-dimesional vector \vec{v} equals $r_{1} \overrightarrow{e_{1}}+r_{2} \overrightarrow{e_{2}}+\cdots+r_{n} \overrightarrow{e_{n}}$, then $r_{i}=\vec{v} \cdot \vec{e}_{i}$ for each i.
IX. Give examples of the following:
(6)
6. Vectors \vec{a}, \vec{b}, and \vec{c} for which $(\vec{a} \times \vec{b}) \times \vec{c} \neq \vec{a} \times(\vec{b} \times \vec{c})$.
7. Nonzero vectors \vec{a}, \vec{b}, and \vec{c} for which $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}$ but $\vec{b} \neq \vec{c}$.

Page 2

X. Find an equation for the plane that contains the points $(1,2,3),(1,3,4)$, and $(2,3,5)$.
(5)
XI. A point moves according to the vector-valued function $\vec{r}(t)=e^{t} \vec{\imath}+e^{-t} \vec{\jmath}$.
(9)

1. Sketch the path of the point, indicating the direction of motion. (Hint: How are x and y related?)
2. Calculate the velocity vectors $\vec{r}^{\prime}(t)$, the speed, and the unit tangent vector $\vec{T}(t)$.
3. Use $a_{T}=\frac{\vec{r}^{\prime}(t) \cdot \vec{r}^{\prime \prime}(t)}{\left\|\vec{r}^{\prime}(t)\right\|}$ and $a_{N}=\frac{\left\|\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime}(t)\right\|}{\left\|\vec{r}^{\prime}(t)\right\|}$ to calculate the tangential and normal components of the acceleration vector $\vec{a}(t)$.
4. When is the point speeding up? When is it slowing down?
XII. Write the general formula for the Taylor series of a function $f(x)$ at $x=a$. Use it to calculate the Taylor (6) series of the function $f(x)=x^{4}$ at $x=2$.
XIII. For the helix $\vec{r}(t)=2 \sin (t) \vec{\imath}+3 t \vec{\jmath}+2 \cos (t) \vec{k}$:
5. Calculate the unit tangent vector $\vec{T}(t)$, and use it to calculate the unit normal $\vec{N}(t)$.
6. Use the formula $\kappa=\frac{\left\|\vec{T}^{\prime}(t)\right\|}{\left\|\vec{r}^{\prime}(t)\right\|}$ to calculate the curvature.
7. Use the formula $\kappa=\left\|\frac{d \vec{T}}{d s}\right\|$ and the Chain Rule to calculate the curvature.
XIV. Bonus Problem: Let $u=1+\frac{x^{3}}{3!}+\frac{x^{6}}{6!}+\frac{x^{9}}{9!}+\cdots, v=x+\frac{x^{4}}{4!}+\frac{x^{7}}{7!}+\frac{x^{10}}{10!}+\cdots$, and $w=\frac{x^{2}}{2!}+\frac{x^{5}}{5!}+\frac{x^{8}}{8!}+\cdots$.
(6) Each of these converges by comparison with the Maclaurin Series of e^{x}. Show that $u^{3}+v^{3}+w^{3!}-3 u v w=1$. (Hint: What is u^{\prime} ?)
