Instructions: Give concise answers, but clearly indicate your reasoning.
I. A curve is give parametrically by the equations $x=\int_{0}^{t} \cos \left(\pi u^{2} / 2\right) d u, y=\int_{0}^{t} \sin \left(\pi u^{2} / 2\right) d u$. Find the
(4) length of the portion of this curve with $0 \leq t \leq \pi$.
II. An equation $r=f(\theta)$ defines a polar curve. Use the Chain Rule $\frac{d y}{d x}=\frac{\frac{d y}{d u}}{\frac{d x}{d u}}$ to derive a general formula for $\frac{d y}{d x}$ in terms of r and θ for such a curve.
III. A curve given by the parametric equations $x=2 t^{3}, y=1-t^{2},-\infty<t<\infty$. Find the area of the region
(4) bounded by the curve and the x-axis.
IV. Find the surface area of a sphere of radius R by regarding it as $x=R \cos (\theta), y=R \sin (\theta)$ and rotating (4) about the x-axis.
V. Calculate the area of the region that lies inside the polar curve $r=4 \sin (\theta)$ and outside the polar curve (4) $r=2$.
VI. The graph of a certain equation $r=f(\theta)$ is
(4) shown at the right, in a rectangular θ - r coordinate system. In an $x-y$ coordinate system, make a reasonably accurate graph of the polar equation $r=f(\theta)$ for this function.

VII. State the Squeeze Theorem. Use the Squeeze Theorem to find the limit of $\left\{\frac{(2 n-1)!}{(2 n+1)!}\right\}$ by comparing it
(5) to the sequence $\{0\}$ and to some sequence of the form $\left\{n^{p}\right\}$.
VIII. Determine whether each of the following series converges or diverges.
(4)

1. $\sum_{n=1}^{\infty} \arctan (n)$
2. $\sum_{n=1}^{\infty}(\sin (1))^{n}$
IX. Find all x for which the series $\sum_{n=0}^{\infty} \frac{1}{x^{n}}$ converges.
(4)

Page 2

X. \quad State the Monotonicity Theorem. Analyze the convergence of the sequence $\left\{\frac{n}{n^{2}+1}\right\}$ as follows:

1. State the Monotonicity Theorem.
2. Calculate that the derivative of the function $\frac{x}{x^{2}+1}$ is nonpositive when $x \geq 1$. Deduce that $\left\{\frac{n}{n^{2}+1}\right\}$ is decreasing.
3. Verify any other hypotheses of the Monotonicity Theorem, to deduce that $\left\{\frac{n}{n^{2}+1}\right\}$ converges.
4. Now, find the limit by dividing numerator and denominator by n and observing the effect of letting $n \rightarrow \infty$.
XI. Use a simple diagram involving $d r$ and $d \theta$ to derive an expresssion for $d s$ in terms of $d r$ and $d \theta$.
(5)
