Mathematics 2433-001H

Examination I

September 20, 2007

Instructions: Give concise answers, but clearly indicate your reasoning.

I. A curve is give parametrically by the equations $x = \int_0^t \cos(\pi u^2/2) \, du$, $y = \int_0^t \sin(\pi u^2/2) \, du$. Find the (4) length of the portion of this curve with $0 \le t \le \pi$.

Name (please print)

II. An equation $r = f(\theta)$ defines a polar curve. Use the Chain Rule $\frac{dy}{dx} = \frac{\frac{dy}{du}}{\frac{dx}{du}}$ to derive a general formula for (4)

 $\frac{dy}{dx}$ in terms of r and θ for such a curve.

- III. A curve given by the parametric equations $x = 2t^3$, $y = 1 t^2$, $-\infty < t < \infty$. Find the area of the region (4) bounded by the curve and the x-axis.
- **IV**. Find the surface area of a sphere of radius R by regarding it as $x = R\cos(\theta)$, $y = R\sin(\theta)$ and rotating (4) about the *x*-axis.
- V. Calculate the area of the region that lies inside the polar curve $r = 4\sin(\theta)$ and outside the polar curve (4) r = 2.
- VI. The graph of a certain equation $r = f(\theta)$ is (4) shown at the right, in a rectangular θ -r coordinate system. In an x-y coordinate system, make a reasonably accurate graph of the polar equation $r = f(\theta)$ for this function.

VII. State the Squeeze Theorem. Use the Squeeze Theorem to find the limit of $\left\{\frac{(2n-1)!}{(2n+1)!}\right\}$ by comparing it to the sequence $\{0\}$ and to some sequence of the form $\{n^p\}$.

VIII. Determine whether each of the following series converges or diverges.

(4) 1. $\sum_{n=1}^{\infty} \arctan(n)$ 2. $\sum_{i=1}^{\infty} (\sin(1))^n$

IX. Find all x for which the series $\sum_{n=0}^{\infty} \frac{1}{x^n}$ converges. (4)

- **X**. State the Monotonicity Theorem. Analyze the convergence of the sequence $\left\{\frac{n}{n^2+1}\right\}$ as follows: (8)
 - 1. State the Monotonicity Theorem.
 - 2. Calculate that the derivative of the function $\frac{x}{x^2+1}$ is nonpositive when $x \ge 1$. Deduce that $\left\{\frac{n}{n^2+1}\right\}$ is decreasing.
 - 3. Verify any other hypotheses of the Monotonicity Theorem, to deduce that $\left\{\frac{n}{n^2+1}\right\}$ converges.
 - 4. Now, find the limit by dividing numerator and denominator by n and observing the effect of letting $n \to \infty$.
- **XI**. Use a simple diagram involving dr and $d\theta$ to derive an expression for ds in terms of dr and $d\theta$.
- (5)