- I. Find an equation for the sphere that has center $(4, -2, \pi)$ and contains the origin.
- **II**. Find parametric equations for the line that is the intersection of the planes x 2y 3z = 1 and 2x + y + z = 1.
- (4)

(4)

III. Determine the convergence or divergence of each of these series, using any information or method other(6) than the Limit Comparison Test.

1.
$$\sum_{n=1}^{\infty} \frac{7+7^n}{8+8^n}$$

$$2. \sum_{n=1}^{\infty} \left(\frac{n-1}{n}\right)^{n^2}$$

IV. Carry out a translation of the form $X = x - x_0$, $Y = y - y_0$, $Z = z - z_0$ to put the equation $x^2 - y^2 - 4z^2 =$ (6) 2x + 16z + 16 into standard form. (You do not have to draw the graph, but you can if you want.) The graph is a hyperboloid of two sheets. Which traces are ellipses? At what points (in *XYZ*-coordinates) does it meet the *X*-axis?

V. Let
$$\vec{a} = -4\vec{i} + \vec{j} + 3\vec{k}$$
 and $\vec{b} = \vec{i} + \vec{j} - \vec{k}$.
(4)

- 1. Calculate the scalar projection of \vec{a} onto \vec{b} .
- 2. Calculate the vector projection of \vec{a} onto \vec{b} .
- **VI**. Give an algebraic verification that $\|\vec{a} + \vec{b}\|^2 + \|\vec{a} \vec{b}\|^2 = 2 \|\vec{a}\|^2 + 2 \|\vec{b}\|^2$, but not by doing a lengthy
- (4) calculation involving \vec{i} , \vec{j} , and \vec{k} .
- **VII**. Give examples of the following:
- (4)
 - 1. Vectors \vec{a} , \vec{b} , and \vec{c} for which $(\vec{a} \times \vec{b}) \times \vec{c} \neq \vec{a} \times (\vec{b} \times \vec{c})$.
 - 2. Nonzero vectors \vec{a} , \vec{b} , and \vec{c} for which $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ but $\vec{b} \neq \vec{c}$.

VIII. Here is a fact: Let \vec{u} be any unit vector (i. e. $\|\vec{u}\| = 1$). If \vec{v} is any vector, then the length of $\vec{v} \times \vec{u}$ is no (4) more than the length of \vec{v} .

- 1. Give an algebraic explanation for this fact.
- 2. Give a geometric explanation for this fact.
- **IX**. If you saw a movie of the planes $y\cos(\theta) + z\sin(\theta) = 0$ as θ went from 0 to 2π , what would they look like? (4) Use both words and picture(s) in your explanation.
- X. Derive these formulas expressing rectangular coordinates in terms of spherical coordinates: $x = \rho \sin(\phi) \cos(\theta)$, (4) $y = \rho \sin(\phi) \sin(\theta)$, $z = \rho \cos(\phi)$.
- **XI**. Draw the graph of this equation given in spherical coordinates: $\rho = \phi^3$.

(4)

XII. Write a possible equation for this saddle surface: (4)

XIII. In higher dimensions, say dimension n, there are vectors $\vec{e_1}, \vec{e_2}, \ldots, \vec{e_n}$ that play the roles of \vec{i}, \vec{j} , and \vec{k} . In (4) particular, $\vec{e_i} \cdot \vec{e_j} = 0$ when $i \neq j$, and $\vec{e_i} \cdot \vec{e_i} = 1$ for each i. Verify that if an n-dimensional vector \vec{v} equals $r_1\vec{e_1} + r_2\vec{e_2} + \cdots + r_n\vec{e_n}$, then $r_1 = \vec{v} \cdot \vec{e_1}$.