I. Find an equation for the sphere that has center $(4,-2, \pi)$ and contains the origin.
(4)
II. Find parametric equations for the line that is the intersection of the planes $x-2 y-3 z=1$ and $2 x+y+z=1$.
III. Determine the convergence or divergence of each of these series, using any information or method other
(6) than the Limit Comparison Test.

1. $\sum_{n=1}^{\infty} \frac{7+7^{n}}{8+8^{n}}$
2. $\sum_{n=1}^{\infty}\left(\frac{n-1}{n}\right)^{n^{2}}$
IV. Carry out a translation of the form $X=x-x_{0}, Y=y-y_{0}, Z=z-z_{0}$ to put the equation $x^{2}-y^{2}-4 z^{2}=$
(6) $2 x+16 z+16$ into standard form. (You do not have to draw the graph, but you can if you want.) The graph is a hyperboloid of two sheets. Which traces are ellipses? At what points (in XYZ-coordinates) does it meet the $X$-axis?
V. Let $\vec{a}=-4 \vec{\imath}+\vec{\jmath}+3 \vec{k}$ and $\vec{b}=\vec{\imath}+\vec{\jmath}-\vec{k}$.
(4)
3. Calculate the scalar projection of $\vec{a}$ onto $\vec{b}$.
4. Calculate the vector projection of $\vec{a}$ onto $\vec{b}$.
VI. Give an algebraic verification that $\|\vec{a}+\vec{b}\|^{2}+\|\vec{a}-\vec{b}\|^{2}=2\|\vec{a}\|^{2}+2\|\vec{b}\|^{2}$, but not by doing a lengthy
(4) calculation involving $\vec{\imath}, \vec{\jmath}$, and $\vec{k}$.
VII. Give examples of the following:
(4)
5. Vectors $\vec{a}, \vec{b}$, and $\vec{c}$ for which $(\vec{a} \times \vec{b}) \times \vec{c} \neq \vec{a} \times(\vec{b} \times \vec{c})$.
6. Nonzero vectors $\vec{a}, \vec{b}$, and $\vec{c}$ for which $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}$ but $\vec{b} \neq \vec{c}$.
VIII. Here is a fact: Let $\vec{u}$ be any unit vector (i. e. $\|\vec{u}\|=1$ ). If $\vec{v}$ is any vector, then the length of $\vec{v} \times \vec{u}$ is no more than the length of $\vec{v}$.
7. Give an algebraic explanation for this fact.
8. Give a geometric explanation for this fact.
IX. If you saw a movie of the planes $y \cos (\theta)+z \sin (\theta)=0$ as $\theta$ went from 0 to $2 \pi$, what would they look like?
(4) Use both words and picture(s) in your explanation.
X. Derive these formulas expressing rectangular coordinates in terms of spherical coordinates: $x=\rho \sin (\phi) \cos (\theta)$,
(4) $\quad y=\rho \sin (\phi) \sin (\theta), z=\rho \cos (\phi)$.
XI. Draw the graph of this equation given in spherical coordinates: $\rho=\phi^{3}$.

## Page 2

XII. Write a possible equation for this saddle surface:
(4)

XIII. In higher dimensions, say dimension $n$, there are vectors $\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}$ that play the roles of $\vec{\imath}, \vec{\jmath}$, and $\vec{k}$. In (4) particular, $\vec{e}_{i} \cdot \vec{e}_{j}=0$ when $i \neq j$, and $\vec{e}_{i} \cdot \vec{e}_{i}=1$ for each $i$. Verify that if an $n$-dimesional vector $\vec{v}$ equals $r_{1} \overrightarrow{e_{1}}+r_{2} \overrightarrow{e_{2}}+\cdots+r_{n} \overrightarrow{e_{n}}$, then $r_{1}=\vec{v} \cdot \overrightarrow{e_{1}}$.

