December 12, 2007
Instructions: Give brief, clear answers.
I. Evaluate by changing to polar coordinates: $\iint_{R} x+y d R$ where R is the region between $x^{2}+y^{2}=1$ and (4) $x^{2}+y^{2}=2$ and above the x-axis.
II. For the function $f(x, y)=\ln \left(x^{2}+y^{2}\right)$, find the maximum rate of change at the point $(1,2)$, and the direction
(6) in which it occurs. Find the directional derivative of f at $(1,2)$ in the direction toward $(2,4)$.
III. Let S be the portion of the sphere of radius a that lies in the first octant. Use the standard parameterization (6) of S to calculate $\iint_{S}(y \vec{\imath}-x \vec{\jmath}+\vec{k}) \cdot d \vec{S}$.
IV. Use the Divergence Theorem to calculate the surface integral $\iint_{S}\left(x^{2} z^{3} \vec{\imath}+2 x y z^{3} \vec{\jmath}+x z^{4} \vec{k}\right) \cdot d \vec{S}$, where S is the surface of the box with $0 \leq x \leq 3,0 \leq y \leq 2,0 \leq z \leq 1$.
V. The radius of a right circular cone is increasing at a rate of $6 \mathrm{in} / \mathrm{s}$ while its height is decreasing at a rate (4) of $3 \mathrm{in} / \mathrm{s}$. At what rate is the volume $V=\pi r^{2} h / 3$ changing when the radius is 10 and the height is 5 ?
VI. Let S be the upper half of the sphere of radius 2 , that is, the points (x, y, z) with $x^{2}+y^{2}+z^{2}=4$ (6) and $z \geq 0$, and suppose that S is oriented with the upward normal. Use Stokes' Theorem to evaluate $\iint_{S} \operatorname{curl}\left(x^{2} e^{y z} \vec{\imath}+y^{2} e^{x z} \vec{\jmath}+z^{2} e^{x y} \vec{k}\right) \cdot d \vec{S}$.
VII. Let S be the upper half of the sphere of radius 1 , that is, the points (x, y, z) with $x^{2}+y^{2}+z^{2}=1$ and (4) $\quad z \geq 0$. Using the geometric interpretation of the surface integral of a vector field as the "flux" (that is, not by calculation using a parameterization or a formula from the formulas list), explain each of the following equalities:

1. $\iint_{S} \vec{\jmath} \cdot d \vec{S}=0$
2. $\iint_{S} \vec{k} \cdot d \vec{S}=\pi$
VIII. Verify that the function $u=\cos (x-a t)+\ln (x+a t)$ is a solution to the wave equation $u_{t t}=a^{2} u_{x x}$.
(4)
IX. Let S be the portion of the cylinder $x^{2}+z^{2}=4$ that lies between the vertical planes $y=0$ and $y=2-x$.
(10) The surface S is parameterized by $x=2 \cos (\theta)$, $y=h, z=2 \sin (\theta)$ for $0 \leq \theta \leq 2 \pi$ and $0 \leq h \leq 2-2 \cos (\theta)$.
3. Calculate $\vec{r}_{\theta}, \vec{r}_{h}, \vec{r}_{h} \times \vec{r}_{\theta}$, and $\left\|\vec{r}_{h} \times \vec{r}_{\theta}\right\|$.
4. Calculate $\iint_{S} x d S$.
5. Calculate $\iint_{S} x \vec{k} \cdot d \vec{S}$.
X. The curl of the vector field $y \vec{\imath}-z \vec{\jmath}+x \vec{k}$ is $\vec{\imath}-\vec{\jmath}-\vec{k}$. Let S be the triangle which is the part of the plane
(6) $2 x+y+z=2$ that lies in the first octant. Give S the upward normal, and give its boundary C the corresponding positive orientation. Use Stokes' Theorem to evaluate the line integral $\int_{C}(y \vec{\imath}-z \vec{\jmath}+x \vec{k}) \cdot d \vec{r}$.
(Hint: the surface integral on S is easy to calculate if one uses the definition $\iint_{S} \vec{G} \cdot d \vec{S}=\iint_{S} \vec{G} \cdot \vec{n} d S$.)
XI. In an $x y$-coordinate system, sketch the gradient of the func(4) tion whose graph is shown to the right.

XII. A function R of the variables R_{1}, R_{2}, and R_{3} is given implicitly by $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}$. Use implicit differentiation to find $\frac{\partial R}{\partial R_{3}}$.
XIII. Use the Divergence Theorem to show that if E is a solid with boundary the surface S, then (5) $\quad \iint_{S}\left(\frac{x}{3} \vec{\imath}+\frac{y}{3} \vec{\jmath}+\frac{z}{3} \vec{k}\right) \cdot d \vec{S}$ always equals the volume of E.
XIV. On two different coordinate systems, graph the following vector fields:
6. $\vec{F}(x, y)=x \vec{\imath}+y \vec{\jmath}$
7. $\vec{F}(x, y)=\frac{-y}{x^{2}+y^{2}} \vec{\imath}+\frac{x}{x^{2}+y^{2}} \vec{\jmath}$
XV. Sketch the region and change the order of integration for $\int_{0}^{1} \int_{e^{x}}^{e} f(x, y) d y d x$.
(4)
