Instructions: Give brief answers, but clearly indicate your reasoning.
I. Evaluate by changing to polar coordinates: $\iint_{R}(x+y) d A$, where R is the region that lies below the x-axis
(5) and between the circles $x^{2}+y^{2}=3$ and $x^{2}+y^{2}=4$.

$$
\begin{aligned}
& \iint_{R}(x+y) d A=\int_{\pi}^{2 \pi} \int_{\sqrt{3}}^{2}(r \cos (\theta)+r \sin (\theta)) r d r d \theta=\left.\int_{\pi}^{2 \pi} \frac{r^{3}}{3}(\cos (\theta)+\sin (\theta))\right|_{\sqrt{3}} ^{2} d \theta \\
& \quad=\int_{\pi}^{2 \pi} \frac{8-3 \sqrt{3}}{3}(\cos (\theta)+\sin (\theta)) d \theta=\left.\frac{8-3 \sqrt{3}}{3}(\sin (\theta)-\cos (\theta))\right|_{\pi} ^{2 \pi}=\frac{6 \sqrt{3}-16}{3}
\end{aligned}
$$

II. Let E be the upper hemisphere of the unit ball, that is, $E=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq 1, z \geq 0\right\}$. For
(9) the integral $\iiint_{E} f(x, y, z) d V$, supply the explicit limits of integration, the expression for $d V$, and (if necessary) the expressions for x, y, and z, that would be needed to calculate the integral:
(i) In $x y z$-coordinates (x, y, z)

$$
\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} f(x, y, z) d z d y d x
$$

(ii) In cylindrical coordinates (r, θ, z)

$$
\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{\sqrt{1-r^{2}}} f(r \cos (\theta), r \sin (\theta), z) d z d r d \theta
$$

(iii) In spherical coordinates (ρ, θ, ϕ)

$$
\int_{0}^{\pi / 2} \int_{0}^{2 \pi} \int_{0}^{1} f(\rho \sin (\phi) \cos (\theta), \rho \sin (\phi) \sin (\theta), \rho \cos (\theta)) d \rho d \theta d \phi
$$

III. Evaluate the integral $\iint_{R} e^{y^{2}} d A$, where $R=\{(x, y) \mid 0 \leq y \leq 1,0 \leq x \leq y\}$.
(5)

$$
\iint_{R} e^{y^{2}} d A=\int_{0}^{1} \int_{0}^{y} e^{y^{2}} d x d y=\left.\int_{0}^{1} x e^{y^{2}}\right|_{0} ^{y} d y=\int_{0}^{1} y e^{y^{2}} d y=e^{y^{2}} /\left.2\right|_{0} ^{1}=\frac{e-1}{2} .
$$

IV. Let E be the solid in the first octant bounded by $x^{2}+y^{2}+z^{2}=1$ and the three coordinate planes (that
(5) is, E is the portion of the unit ball that lies in the first octant). Suppose that the density at each point of E equals the distance from the point to the $x z$-plane. Write integrals to find the mass of E and its moment with respect to the $x z$-plane. Do not supply explicit limits for the integrals, or try to evaluate the integrals.

The density is $\rho(x, y, z)=y$. The mass and moment are $m=\iiint_{E} d m=\iiint_{E} y d V, M_{x z}=$ $\iiint_{E} y d m=\iiint_{E} y z d V$.

Page 2

V. Calculate the numerical value of a Riemann sum to estimate the value of $\iint_{R} x^{2} y d A$, where R is the rectangle $[0,4] \times[0,2]$, i. e. the (x, y) with $0 \leq x \leq 4$ and $0 \leq y \leq 2$. Partition the x-interval $[0,4]$ into two equal subintervals, and partition the y-interval into two equal subintervals, so that the Riemann sum has four terms. Use the Midpoint Rule to choose the sample points.

The rectangles are $[0,2] \times[0,1],[2,4] \times[0,1],[0,2] \times[1,2]$, and $[2,4] \times[1,2]$, and the corresponding midpoints are $(1,1 / 2),(3,1 / 2),(1,3 / 2)$, and $(3,3 / 2)$. The function values at the midpoints are $1 / 2$, $9 / 2,3 / 2$, and $27 / 2$. Since the area of each rectangle is 2 , the Riemann sum is $(1 / 2) \cdot 2+9 / 2) \cdot 2+$ $(3 / 2) \cdot 2+(27 / 2) \cdot 2=40$.
VI. Sketch a portion of a typical graph $z=f(x, y)$, showing the tangent plane at a point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$.
(5) Let \vec{v}_{x} be the vector in the tangent plane whose $\vec{\imath}$-component is 1 and whose $\vec{\jmath}$-component is 0 (i. e. \vec{v}_{x} is a vector of the form $\vec{\imath}+\lambda \vec{k}$ for some number λ). Show \vec{v}_{x} in your sketch, and express λ in terms of f or its partial derivatives.

For the sketch, see your class notes. λ is $f_{x}\left(x_{0}, y_{0}\right)$, so $\vec{v}_{x}=\vec{\imath}+f_{x}\left(x_{0}, y_{0}\right) \vec{k}$.
VII. Calculate $\left\|\left(\vec{\imath}+f_{x}\left(x_{0}, y_{0}\right) \vec{k}\right) \times\left(\vec{\jmath}+f_{y}\left(x_{0}, y_{0}\right) \vec{k}\right)\right\|$. Give the details of the calculation, not just the answer.

$$
\begin{gather*}
\left\|\left(\vec{\imath}+f_{x}\left(x_{0}, y_{0}\right) \vec{k}\right) \times\left(\vec{\jmath}+f_{y}\left(x_{0}, y_{0}\right) \vec{k}\right)\right\|=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
1 & 0 & f_{x}\left(x_{0}, y_{0}\right) \\
0 & 1 & f_{y}\left(x_{0}, y_{0}\right)
\end{array}\right|=\left\|-f_{x}\left(x_{0}, y_{0}\right) \vec{\imath}-f_{y}\left(x_{0}, y_{0}\right) \vec{\jmath}+\vec{k}\right\| \tag{5}\\
=\sqrt{\left(-f_{x}\left(x_{0}, y_{0}\right)\right)^{2}+\left(-f_{y}\left(x_{0}, y_{0}\right)\right)^{2}+1}=\sqrt{1+f_{x}\left(x_{0}, y_{0}\right)^{2}+f_{y}\left(x_{0}, y_{0}\right)^{2}}
\end{gather*}
$$

VIII. Find the surface area of the portion of the paraboloid $z=x^{2}+y^{2}$ that lies above the unit disk in the (6) $x y$-plane.

We calculate $d S=\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d x d y=\sqrt{1+4 x^{2}+4 y^{2}} d x d y$. Integrating in polar coordinates, the surface area is

$$
\int_{0}^{2 \pi} \int_{0}^{1} \sqrt{1+4 r^{2}} r d r d \theta=\int_{0}^{2 \pi} d \theta\left(\left.\frac{2}{3} \frac{\left(1+4 r^{2}\right)^{3 / 2}}{8}\right|_{0} ^{1}\right)=\pi \frac{5 \sqrt{5}-1}{6}
$$

IX. Let E be the solid tetrahedron bounded by the coordinate planes and the plane $x+y+2 z=2$. Supply
limits for the integral $\iiint_{E} f(x, y, z) d V$, assuming that the order of integration is first with respect to x, then with respect to y, then with respect to z.

The top plane is $x=2-y-2 z$, and the side in the $y z$-plane (i. e. where $y=0$) is the triangle bounded by the coordinate axes and the line $y+2 z=2$. So the integral is $\int_{0}^{1} \int_{0}^{2-2 z} \int_{0}^{2-y-2 z} f(x, y, z) d x d y d z$.

Page 3
Name (please print)
X. Sketch the region and change the order of integration for $\int_{1}^{3} \int_{0}^{\ln (x)} f(x, y) d y d x$.
(5)

$$
\int_{0}^{\ln (3)} \int_{e^{y}}^{3} f(x, y) d x d y
$$

XI. Evaluate the integral $\int_{-a}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}}\left(x^{2}+y^{2}\right)^{3 / 2} d x d y$.

The domain of integration is the right half of the disk of radius a. Changing to polar coordinates, the integral becomes

$$
\int_{-\pi / 2}^{\pi / 2} \int_{0}^{a} r^{3} \cdot r d r d \theta=\int_{-\pi / 2}^{\pi / 2} \frac{a^{5}}{5} d \theta=\frac{\pi a^{5}}{5}
$$

