November 29, 2007
Instructions: Give brief answers, but clearly indicate your reasoning.
$x=\rho \cos (\theta) \sin (\phi), y=\rho \sin (\theta) \sin (\phi), z=\rho \cos (\phi), d V=\rho^{2} \sin (\phi) d \rho d \phi d \theta, \vec{r}_{\phi} \times \vec{r}_{\theta}=a \sin (\phi)(x \vec{\imath}+y \vec{\jmath}+z \vec{k})$,
$\left\|\vec{r}_{\phi} \times \vec{r}_{\theta}\right\|=a^{2} \sin (\phi)$
$d S=\sqrt{1+g_{x}^{2}+g_{y}^{2}} d D$
$d S=\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d D$
$\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{S} \vec{F} \cdot \vec{n} d S$
$\iint_{S}(P \vec{\imath}+Q \vec{\jmath}+R \vec{k}) \cdot d \vec{S}=\iint_{D}-P g_{x}-Q g_{y}+R d D$
$\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{D} \vec{F} \cdot\left(\vec{r}_{u} \times \vec{r}_{v}\right) d D$
I. A path C is parameterized as a vector-valued function by $\vec{r}(t)=t \vec{\imath}+t^{2} \vec{\jmath}, 1 \leq t \leq 2$. Using this parameter(6) ization, evaluate the following line integrals.

1. $\int_{C}(y / x) d x$

We have $d x=d t$, so $\int_{C}(y / x) d x=\int_{1}^{2}\left(t^{2} / t\right) d t=\int_{1}^{2} t d t=3 / 2$.
2. $\int_{C}(y / x) d s$

We have $d s^{2}=d x^{2}+d y^{2}=(d t)^{2}+(2 t d t)^{2}=\left(1+4 t^{2}\right) d t^{2}$, so $d s=\sqrt{1+4 t^{2}} d t$. So $\int_{C}(x / y) d s=$ $\int_{1}^{2}\left(t^{2} / t\right) \sqrt{1+4 t^{2}} d t=\int_{1}^{2} t \sqrt{1+4 t^{2}} d t=\left.(1 / 8)(2 / 3)\left(1+4 t^{2}\right)^{3 / 2}\right|_{1} ^{2}=(17 \sqrt{17}-5 \sqrt{5}) / 12$.
II. Let $\vec{F}(x, y, z)=2 x y \vec{\imath}+\left(x^{2}+2 y z\right) \vec{\jmath}+\left(y^{2}+3 z\right) \vec{k}$.
(6)

1. Find a function f such that $\vec{F}=\nabla f$.

We need $f_{x}=2 x y$, so $f(x, y, z)=x^{2} y+g(y, z)$ for some function g. We also need $x^{2}+2 y z=f_{y}=$ $x^{2}+g+y$, so $g_{y}=2 y z$ and therefore $g(y, z)=y^{2} z+h(z)$ and $f(x, y, z)=x^{2} y+y^{2} z+h(z)$. Finally, we need $y^{2}+z=f_{z}=y^{2}+h^{\prime}(z)$, so $h^{\prime}(z)=3 z$ and therefore $h(z)=3 z^{2} / 2+C$. So any f of the form $x^{2} y+y^{2} z+3 z^{2} / 2+C$ has $\nabla f=\vec{F}$.
2. Calculate $\int_{C} \vec{F} \cdot d \vec{r}$, where C is given by the parameterization $x=\sqrt{\cos (t)}, y=\cos ^{4}(t), z=\cos ^{5}(t)$, $0 \leq t \leq \pi / 2$.

We apply the Fundamental Theorem for Line Integrals. The initial point of C is $(1,1,1)$, and its terminal point is $(0,0,0)$. So for the $f(x, y, z)$ in part 1 (taking $C=0$) which had $\nabla f=\vec{F}$, we have $\int_{C} \vec{F} \cdot d \vec{r}=f(0,0,0)-f(1,1,1)=0-7 / 2=-7 / 2$.

Page 2

III. Let $\vec{F}(x, y)$ be the vector field $\frac{-y}{x^{2}+y^{2}} \vec{\imath}+\frac{x}{x^{2}+y^{2}} \vec{\jmath}$. Verify by calculation that $\int_{C} \vec{F} \cdot d \vec{r}$ is not pathindependent on the domain $\{(x, y) \mid(x, y) \neq(0,0)\}$. (Hint: Consider the line integral of \vec{F} on the unit circle C).

On the unit circle, the unit tangent vector is $\vec{T}=-y \vec{\imath}+x \vec{\jmath}$, and $x^{2}+y^{2}=1$, so we have

$$
\int_{C}\left(\frac{-y}{x^{2}+y^{2}} \vec{\imath}+\frac{x}{x^{2}+y^{2}} \vec{\jmath}\right) \cdot d \vec{r}=\int_{C}(-y \vec{\imath}+x \vec{\jmath}) \cdot \vec{T} d s=\int_{C} y^{2}+x^{2} d s=\int_{C} 1 d s=2 \pi,
$$

since $\int_{C} 1 d s$ is just the length of C. But when an integral is path-independent, the integral around any closed loop must be 0 (if the integral were path independent, then $\int_{C} \vec{F} \cdot d \vec{r}$ this would be the same as the integral around the reverse path $-C$, which is -2π).
IV. Verify that if $P(x, y, z) \vec{\imath}+Q(x, y, z) \vec{\jmath}+R(x, y, z) \vec{k}$ is conservative, then $\frac{\partial P}{\partial z}=\frac{\partial R}{\partial x}$. (Hint: if it is conservative, then it can be written in the form $f_{x} \vec{\imath}+f_{y} \vec{\jmath}+f_{z} \vec{k}$.)

A conservative vector field can be written in the form $f_{x} \vec{\imath}+f_{y} \vec{\jmath}+f_{z} \vec{k}$, that is, $P(x, y, z)=f_{x}$ and $R(x, y, z)=f_{z}$. So $\frac{\partial P}{\partial z}=f_{x z}$ and $\frac{\partial R}{\partial x}=f_{z x}$. By Clairaut's Theorem, these must be equal.
V. Suppose that C is a closed loop with no self intersections, bounding a region D.

1. Explain how one determines the "positive" or "standard" orientation on C.

If you travel along C in the positive direction, you see the region in the plane bounded by C on your left, rather than on your right.
2. State Green's Theorem.

A closed loop C bounds a region R in the plane, and C is given the positive orientation. Green's Theorem says that for functions $P(x, y)$ and $Q(x, y)$,

$$
\int_{C} P(x, y) d x+Q(x, y) d y=\iint_{R} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d R
$$

(Alternatively, one can state this in terms of the line integral of a vector field:

$$
\left.\int_{C}(P(x, y) \vec{\imath}+Q(x, y) \vec{\jmath}) \cdot d \vec{r}=\iint_{R} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d R .\right)
$$

VI. Calculate the curl and the divergence of the vector field $\vec{F}(x, y, z)=3 z^{2} \vec{\imath}+x \cos (y) \vec{\jmath}-2 x z \vec{k}$.
(5)

$$
\begin{aligned}
& \operatorname{curl}\left(3 z^{2} \vec{\imath}+x \cos (y) \vec{\jmath}-2 x z \vec{k}\right)=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
3 z^{2} & x \cos (y) & -2 x z
\end{array}\right|=(0-0) \vec{\imath}-(-2 z-6 z) \vec{\jmath}+(\cos (y)-0) \vec{k}= \\
& 8 z \vec{\jmath}+\cos (y) \vec{k} \text { and } \operatorname{div}\left(3 z^{2} \vec{\imath}+x \cos (y) \vec{\jmath}-2 x z \vec{k}\right)=0+x(-\sin (y))-2 x=-2 x-x \sin (y) .
\end{aligned}
$$

Page 3

Name (please print)
VII. Let S be the portion of the cylinder $x^{2}+z^{2}=1$ that lies between the vertical planes $y=0$ and $y=2-x$.
(5) The surface S is parameterized by $x=\cos (\theta), y=h, z=\sin (\theta)$ for $0 \leq \theta \leq 2 \pi$ and $0 \leq h \leq 2-\cos (\theta)$.

1. Calculate \vec{r}_{θ} and \vec{r}_{h}.

$$
\vec{r}_{\theta}=-\sin (\theta) \vec{\imath}+\cos (\theta) \vec{k} \text { and } \vec{r}_{h}=\vec{\jmath} .
$$

2. Calculate $\vec{r}_{h} \times \vec{r}_{\theta}$ and $\left\|\vec{r}_{h} \times \vec{r}_{\theta}\right\|$.

$$
\vec{r}_{h} \times \vec{r}_{\theta}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
0 & 1 & 0 \\
-\sin (\theta) & 0 & \cos (\theta)
\end{array}\right|=\cos (\theta) \vec{\imath}+\sin (\theta) \vec{k}, \text { so }\left\|\vec{r}_{h} \times \vec{r}_{\theta}\right\|=\sqrt{\cos ^{2}(\theta)+\sin ^{2}(\theta)}=\sqrt{1}=1
$$

VIII. Use Green's Theorem to calculate $\int_{C}\left(y^{3} \vec{\imath}-x^{3} \vec{\jmath}\right) \cdot d \vec{r}$, where C is the circle $x^{2}+y^{2}=4$ with the clockwise
(6) orientation.

Letting D be the unit disk, and noting that C has the reverse of the positive orientation, Green's Theorem gives us $\int_{C}\left(y^{3} \vec{\imath}-x^{3} \vec{\jmath}\right) \cdot d \vec{r}=-\iint_{D} \frac{\partial\left(-x^{3}\right)}{\partial x}-\frac{\partial\left(y^{3}\right)}{\partial y} d D=\iint_{D} 3 x^{2}+3 y^{2} d D=\int_{0}^{2 \pi} d \theta \int_{0}^{2} 3 r^{3} d r=$ $2 \pi \cdot 12=24 \pi$.
IX. Calculate $\iint_{S}\left(x y \vec{\imath}+4 x^{2} \vec{\jmath}+y z \vec{k}\right) \cdot d \vec{S}$, where S is the surface $z=x e^{y}, 0 \leq x \leq 1,0 \leq y \leq 2$.
(6)

Using the formula $\iint_{S}(P \vec{\imath}+Q \vec{\jmath}+R \vec{k}) \cdot d \vec{S}=\iint_{D}-P g_{x}-Q g_{y}+R d D$, we have

$$
\begin{aligned}
& \int_{S}\left(x y \vec{\imath}+4 x^{2} \vec{\jmath}+y z \vec{k}\right) \cdot d \vec{S}=\int_{D}-x y e^{y}-4 x^{2} x e^{y}+y z d D=\int_{D}-x y e^{y}-4 x^{2} x e^{y}+y x e^{y} d D \\
& =\int_{D}-4 x^{3} e^{y} d D=-\int_{0}^{2} e^{y} d y \int_{0}^{1} 4 x^{3} d x=1-e^{2} .
\end{aligned}
$$

X. Let S be the part of the cone $z=\sqrt{x^{2}+y^{2}}$ that lies between the planes $z=1$ and $z=2$. Calculate $d S$ (6) in terms of $d D$, where D is the domain in the $x y$-plane lying beneath S, and use it to calculate $\iint_{S} z^{2} d S$.

$$
\begin{aligned}
& \text { We calculate } d S=\sqrt{1+z_{x}^{2}+z_{y}^{2}} d D=\sqrt{1+\left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right)^{2}+\left(\frac{y}{\sqrt{x^{2}+y^{2}}}\right)^{2}} d D \\
& =\sqrt{1+\frac{x^{2}}{x^{2}+y^{2}}+\frac{y^{2}}{x^{2}+y^{2}}} d D=\sqrt{2} d D \text {, so } \iint_{S} z^{2} d S=\iint_{R}\left(\sqrt{x^{2}+y^{2}}\right)^{2} \sqrt{2} d D \\
& =\iint_{R} r^{2} \sqrt{2} r d r d \theta d D=\int_{0}^{2 \pi} d \theta \int_{1}^{2} \sqrt{2} r^{3} d r=2 \pi \sqrt{2}(16-1) / 4=15 \pi / \sqrt{2} .
\end{aligned}
$$

