
Mathematics 2443-003

Examination III Form A

November 29, 2007

Name (please print)

Instructions: Give brief answers, but clearly indicate your reasoning.

x = ρ cos(θ) sin(φ), y = ρ sin(θ) sin(φ), z = ρ cos(φ), dV = ρ2 sin(φ) dρ dφ dθ , ~rφ × ~rθ = a sin(φ)(x~ı + y~ + z~k),
‖~rφ × ~rθ ‖ = a2 sin(φ)

dS =
√

1 + g2
x + g2

y dD

dS = ‖~ru × ~rv ‖ dD
∫∫

S
~F · d~S =

∫∫

S
~F · ~n dS

∫∫

S (P ~ı + Q~ + R~k) · d~S =
∫∫

D −P gx − Qgy + R dD
∫∫

S
~F · d~S =

∫∫

D
~F · (~ru × ~rv) dD

I.
(6)

A path C is parameterized as a vector-valued function by ~r(t) = t~ı + t2~, 1 ≤ t ≤ 2. Using this parameter-
ization, evaluate the following line integrals.

1.

∫

C
(y/x) dx

We have dx = dt, so

∫

C
(y/x) dx =

∫

2

1

(t2/t) dt =

∫

2

1

t dt = 3/2.

2.

∫

C
(y/x) ds

We have ds2 = dx2 + dy2 = (dt)2 + (2t dt)2 = (1 + 4t2) dt2, so ds =
√

1 + 4t2 dt. So

∫

C
(x/y) ds =

∫

2

1

(t2/t)
√

1 + 4t2 dt =

∫

2

1

t
√

1 + 4t2 dt = (1/8)(2/3)(1 + 4t2)3/2

∣

∣

∣

2

1

= (17
√

17 − 5
√

5)/12.

II.
(6)

Let ~F (x, y, z) = 2xy~ı + (x2 + 2yz)~ + (y2 + 3z)~k.

1. Find a function f such that ~F = ∇f .

We need fx = 2xy, so f(x, y, z) = x2y + g(y, z) for some function g. We also need x2 + 2yz = fy =
x2 + g + y, so gy = 2yz and therefore g(y, z) = y2z + h(z) and f(x, y, z) = x2y + y2z + h(z). Finally,
we need y2 + z = fz = y2 + h′(z), so h′(z) = 3z and therefore h(z) = 3z2/2 + C. So any f of the form
x2y + y2z + 3z2/2 + C has ∇f = ~F .

2. Calculate

∫

C

~F · d~r, where C is given by the parameterization x =
√

cos(t), y = cos4(t), z = cos5(t),

0 ≤ t ≤ π/2.

We apply the Fundamental Theorem for Line Integrals. The initial point of C is (1, 1, 1), and its
terminal point is (0, 0, 0). So for the f(x, y, z) in part 1 (taking C = 0) which had ∇f = ~F , we have
∫

C

~F · d~r = f(0, 0, 0) − f(1, 1, 1) = 0 − 7/2 = −7/2.
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III.
(5)

Let ~F (x, y) be the vector field
−y

x2 + y2
~ı +

x

x2 + y2
~. Verify by calculation that

∫

C

~F · d~r is not path-

independent on the domain {(x, y) | (x, y) 6= (0, 0)}. (Hint: Consider the line integral of ~F on the unit
circle C).

On the unit circle, the unit tangent vector is ~T = −y~ı + x~, and x2 + y2 = 1, so we have

∫

C

( −y

x2 + y2
~ı +

x

x2 + y2
~
)

· d~r =

∫

C
(−y~ı + x~ ) · ~T ds =

∫

C
y2 + x2 ds =

∫

C
1 ds = 2π ,

since

∫

C
1 ds is just the length of C. But when an integral is path-independent, the integral around

any closed loop must be 0 (if the integral were path independent, then

∫

C

~F · d~r this would be the

same as the integral around the reverse path −C, which is −2π).

IV.
(4)

Verify that if P (x, y, z)~ı + Q(x, y, z)~ + R(x, y, z)~k is conservative, then
∂P

∂z
=

∂R

∂x
. (Hint: if it is conser-

vative, then it can be written in the form fx~ı + fy ~ + fz
~k.)

A conservative vector field can be written in the form fx~ı + fy ~ + fz
~k, that is, P (x, y, z) = fx and

R(x, y, z) = fz. So
∂P

∂z
= fxz and

∂R

∂x
= fzx. By Clairaut’s Theorem, these must be equal.

V.
(5)

Suppose that C is a closed loop with no self intersections, bounding a region D.

1. Explain how one determines the “positive” or “standard” orientation on C.

If you travel along C in the positive direction, you see the region in the plane bounded by C on your
left, rather than on your right.

2. State Green’s Theorem.

A closed loop C bounds a region R in the plane, and C is given the positive orientation. Green’s
Theorem says that for functions P (x, y) and Q(x, y),

∫

C
P (x, y) dx + Q(x, y) dy =

∫∫

R

∂Q

∂x
− ∂P

∂y
dR .

(Alternatively, one can state this in terms of the line integral of a vector field:

∫

C
(P (x, y)~ı + Q(x, y)~) · d~r =

∫∫

R

∂Q

∂x
− ∂P

∂y
dR .)

VI.
(5)

Calculate the curl and the divergence of the vector field ~F (x, y, z) = 3z2~ı + x cos(y)~ − 2xz ~k.

curl(3z2~ı + x cos(y)~ − 2xz ~k) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

~ı ~ ~k

∂

∂x

∂

∂y

∂

∂z

3z2 x cos(y) −2xz

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (0 − 0)~ı − (−2z − 6z)~ + (cos(y) − 0)~k =

8z ~ + cos(y)~k and div(3z2~ı + x cos(y)~ − 2xz ~k) = 0 + x(− sin(y)) − 2x = −2x − x sin(y).
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VII.
(5)

Let S be the portion of the cylinder x2 + z2 = 1 that lies between the vertical planes y = 0 and y = 2− x.
The surface S is parameterized by x = cos(θ), y = h, z = sin(θ) for 0 ≤ θ ≤ 2π and 0 ≤ h ≤ 2 − cos(θ).

1. Calculate ~rθ and ~rh.

~rθ = − sin(θ)~ı + cos(θ) ~k and ~rh = ~.

2. Calculate ~rh × ~rθ and ‖~rh × ~rθ ‖.

~rh × ~rθ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

~ı ~ ~k

0 1 0

− sin(θ) 0 cos(θ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= cos(θ)~ı + sin(θ)~k, so ‖~rh × ~rθ ‖ =
√

cos2(θ) + sin2(θ) =
√

1 = 1.

VIII.
(6)

Use Green’s Theorem to calculate

∫

C
(y3~ı− x3 ~ ) · d~r, where C is the circle x2 + y2 = 4 with the clockwise

orientation.

Letting D be the unit disk, and noting that C has the reverse of the positive orientation, Green’s Theo-

rem gives us

∫

C
(y3~ı−x3 ~ )·d~r = −

∫∫

D

∂(−x3)

∂x
−∂(y3)

∂y
dD =

∫∫

D
3x2+3y2 dD =

∫

2π

0

dθ

∫

2

0

3r3 dr =

2π · 12 = 24π.

IX.
(6)

Calculate

∫∫

S
(xy~ı + 4x2 ~ + yz ~k) · d~S, where S is the surface z = xey, 0 ≤ x ≤ 1, 0 ≤ y ≤ 2.

Using the formula
∫∫

S (P ~ı + Q~ + R~k) · d~S =
∫∫

D −P gx − Qgy + R dD, we have
∫

S
(xy~ı + 4x2 ~ + yz ~k) · d~S =

∫

D
−xy ey − 4x2 xey + yz dD =

∫

D
−xy ey − 4x2 xey + yxey dD

=

∫

D
−4x3ey dD = −

∫

2

0

ey dy

∫

1

0

4x3 dx = 1 − e2.

X.
(6)

Let S be the part of the cone z =
√

x2 + y2 that lies between the planes z = 1 and z = 2. Calculate dS

in terms of dD, where D is the domain in the xy-plane lying beneath S, and use it to calculate

∫∫

S
z2 dS.

We calculate dS =
√

1 + z2
x + z2

y dD =

√

1 +
( x

√

x2 + y2

)2

+
( y

√

x2 + y2

)2

dD

=

√

1 +
x2

x2 + y2
+

y2

x2 + y2
dD =

√
2 dD, so

∫∫

S
z2 dS =

∫∫

R
(
√

x2 + y2)2
√

2 dD

=

∫∫

R
r2

√
2 r dr dθ dD =

∫

2π

0

dθ

∫

2

1

√
2 r3 dr = 2π

√
2 (16 − 1)/4 = 15π/

√
2.


