November 29, 2007
Instructions: Give brief answers, but clearly indicate your reasoning.

$$
\begin{aligned}
& x=\rho \cos (\theta) \sin (\phi), y=\rho \sin (\theta) \sin (\phi), z=\rho \cos (\phi), d V=\rho^{2} \sin (\phi) d \rho d \phi d \theta, \vec{r}_{\phi} \times \vec{r}_{\theta}=a \sin (\phi)(x \vec{\imath}+y \vec{\jmath}+z \vec{k}), \\
& \left\|\vec{r}_{\phi} \times \vec{r}_{\theta}\right\|=a^{2} \sin (\phi) \\
& d S=\sqrt{1+g_{x}^{2}+g_{y}^{2}} d D \\
& d S=\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d D \\
& \iint_{S} \vec{F} \cdot d \vec{S}=\iint_{S} \vec{F} \cdot \vec{n} d S \\
& \iint_{S}(P \vec{\imath}+Q \vec{\jmath}+R \vec{k}) \cdot d \vec{S}=\iint_{D}-P g_{x}-Q g_{y}+R d D \\
& \iint_{S} \vec{F} \cdot d \vec{S}=\iint_{D} \vec{F} \cdot\left(\vec{r}_{u} \times \vec{r}_{v}\right) d D
\end{aligned}
$$

I. A path C is parameterized as a vector-valued function by $\vec{r}(t)=t^{2} \vec{\imath}+t \vec{\jmath}, 1 \leq t \leq 2$. Using this parameter(6) ization, evaluate the following line integrals.

1. $\int_{C}(x / y) d x$
2. $\int_{C}(x / y) d s$
II. Let $\vec{F}(x, y, z)=2 x y \vec{\imath}+\left(x^{2}+2 y z\right) \vec{\jmath}+\left(y^{2}+z\right) \vec{k}$.
(6)
3. Find a function f such that $\vec{F}=\nabla f$.
4. Calculate $\int_{C} \vec{F} \cdot d \vec{r}$, where C is given by the parameterization $x=\cos ^{3}(t), y=\cos ^{4}(t), z=\sqrt{\cos (t)}$, $0 \leq t \leq \pi / 2$.
III. Let $\vec{F}(x, y)$ be the vector field $\frac{-y}{x^{2}+y^{2}} \vec{\imath}+\frac{x}{x^{2}+y^{2}} \vec{\jmath}$. Verify by calculation that $\int_{C} \vec{F} \cdot d \vec{r}$ is not path-
(5) independent on the domain $\{(x, y) \mid(x, y) \neq(0,0)\}$. (Hint: Consider the line integral of \vec{F} on the unit circle C).
IV. Verify that if $P(x, y, z) \vec{\imath}+Q(x, y, z) \vec{\jmath}+R(x, y, z) \vec{k}$ is conservative, then $\frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y}$. (Hint: if it is conser-
(4) vative, then it can be written in the form $f_{x} \vec{\imath}+f_{y} \vec{\jmath}+f_{z} \vec{k}$.)
V. Suppose that C is a closed loop with no self intersections, bounding a region D.
5. Explain how one determines the "positive" or "standard" orientation on C.
6. State Green's Theorem.
VI. Calculate the curl and the divergence of the vector field $\vec{F}(x, y, z)=3 z^{2} \vec{\imath}-x \cos (y) \vec{\jmath}+2 x z \vec{k}$.
(5)
VII. Let S be the portion of the cylinder $x^{2}+z^{2}=1$ that lies between the vertical planes $y=0$ and $y=2-x$.
(5) The surface S is parameterized by $x=\cos (\theta), y=h, z=\sin (\theta)$ for $0 \leq \theta \leq 2 \pi$ and $0 \leq h \leq 2-\cos (\theta)$.
7. Calculate \vec{r}_{θ} and \vec{r}_{h}.
8. Calculate $\vec{r}_{h} \times \vec{r}_{\theta}$ and $\left\|\vec{r}_{h} \times \vec{r}_{\theta}\right\|$.

Page 2

VIII. Let S be the part of the cone $z=\sqrt{x^{2}+y^{2}}$ that lies between the planes $z=1$ and $z=2$. Calculate $d S$ (6) in terms of $d D$, where D is the domain in the $x y$-plane lying beneath S, and use it to calculate $\iint_{S} z^{2} d S$.
IX. Calculate $\iint_{S}\left(x y \vec{\imath}+4 x^{2} \vec{\jmath}+y z \vec{k}\right) \cdot d \vec{S}$, where S is the surface $z=x e^{y}, 0 \leq x \leq 1,0 \leq y \leq 2$.
(6)
X. Use Green's Theorem to calculate $\int_{C}\left(y^{3} \vec{\imath}-x^{3} \vec{\jmath}\right) \cdot d \vec{r}$, where C is the circle $x^{2}+y^{2}=4$ with the clockwise (6) orientation.

