Mathematics 6813-001	Name (please print)			
Final Examination				
December 18, 2008				
	TT 1 1	,		

Instructions: Insofar as possible, give brief, clear answers. Use major theorems when possible.

I. Let $p: (\widetilde{X}, \widetilde{x}) \to (X, x)$ be a covering map, and let α be a loop in X based at x. Let $\widetilde{\alpha}$ be the lift of α (7) starting at \widetilde{x} . Prove that $\widetilde{\alpha}$ is a loop if and only if $[\alpha] \in p_{\#}(\pi_1(\widetilde{X}, \widetilde{x}))$.

- **II**. Recall the proof that a path-connected, locally path-connected, semilocally simply connected space X has a simply-connected covering space \tilde{X} . Tell how the points of \tilde{X} are defined, how the covering map $p: \tilde{X} \to X$ is defined, and how the basic open sets in its topology are defined. You do not need to give any more details about the proof.
- III. Define the following: Δ^n , a singular n-simplex, $C_n(X)$, $C_n(X, A)$, a chain map, $f_{\#}$, f_* . Show how the fact
- (8) that $f_{\#}$ is a chain map proves that f_* is well-defined.
- **IV**. State the *Homotopy Extension Property*. Use the fact that a subcomplex of a CW-complex has the HEP (6) to prove the following proposition: Let A be a subcomplex of a CW-complex X. Suppose that $f: A \to Y$ is a continuous map that extends to a continuous map $F: X \to Y$. Suppose further that $f \simeq g$. Then g extends to a continuous map $G: X \to Y$.
- V. The figure to the right shows
 (6) a certain covering space of the one-point union of two circles a and b.
 - (i) Label a and b with single and double arrows. Make a corresponding labeling of the covering space that indicates a particular covering map.

- (ii) Here is a sloppy way to state the Lifting Criterion: Let $p: \widetilde{X} \to X$ be a covering map, and let $f: Y \to X$ be a continuous map. Then f lifts to a map $F: Y \to \widetilde{X}$ with pF = f if and only if $f_{\#}(\pi_1(Y)) \subseteq p_{\#}(\pi_1(\widetilde{X}))$. Give a precise statement of the Lifting Criterion, taking basepoints into account.
- (iii) Use the example of a covering map given in part (i) to explain why basepoints must be taken into account in stating the Lifting Criterion.
- VI. Recall that the cone on a space A is the quotient space $CA = (A \times I)/(A \times \{1\})$. Let $A \subset X$, with A and (6) X path-connected, and consider the quotient space $Y = X \cup CA$ obtained from X and CA by identifying each $(a, 0) \in CA$ with $a \in A \subset X$. Let P be the cone point $[A \times \{1\}]$. Observe that $CA - (A \times \{0\})$ is contractible, and Y - P deformation retracts to X (you do not need to give any argument, except drawing reasonable pictures). Use van Kampen's Theorem to give a description of $\pi_1(Y, y_0)$ at a basepoint y_0 in $A \times (0, 1)$. (You can be a bit informal, but try to stay close to the statement of van Kampen's Theorem.)

- **VII.** The figure to the right shows a Δ -structure on a Möbius band X; the
- (11) right and left sides of the square are identified as indicated to form the band. The Δ -structure has four 2-simplices, seven 1-simplices, and three 0-simplices. The top and bottom horizontal 1-simplices t and bform the boundary circle in X. The middle horizontal 1-simplex m has its endpoints identified and forms the "core circle" C of X. Orient t, m, and b from left to right. It is easy to check that X deformation retracts to C (you do not need to prove this), so that the inclusion $i_*: H_k(C) \to H_k(X)$ is an isomorphism for each k.

- (i) The core circle C has a Δ -structure with one 1-simplex m and one 0-simplex v. Use this to calculate the homology of C. Since X deformation retracts to C, the inclusion $C \to X$ is an isomorphism on homology groups.
- (ii) The boundary circle D of M has a Δ -structure with two 1-simplices t and b and two 0-simplices x and y, the left and right endpoints of t. Use this Δ -structure to calculate the homology of D.
- (iii) Label orientations on the four 2-simplices τ_1 , τ_2 , τ_3 , and τ_4 and on t, m, and b so that the 2-chain $c = \tau_1 + \tau_2 + \tau_3 + \tau_4$ has $\partial c = t + b 2m$.
- (iv) Use the chain in part (iii) (even if you did not find it explicitly) to explain why the inclusion $j: D \to X$ carries a generator of $H_1(D)$ to $2[m] \in H_1(X)$.
- (v) Deduce that X does not retract to D.

VIII. Let F and G be chain maps from the chain complex $\dots \to A_{n+1} \xrightarrow{\partial} A_n \xrightarrow{\partial} A_{n-1} \to \dots$ to the chain complex (5) $\dots \to B_{n+1} \xrightarrow{\partial} B_n \xrightarrow{\partial} B_{n-1} \to \dots$. Define a *chain homotopy* from F to G. Verify that if P is a chain homotopy from F to G, then $F_* = G_* \colon H_n(A) \to H_n(B)$.

- IX. Consider a commutative diagram of abelian groups and homomorphisms:
- (8)

0	$\longrightarrow A \xrightarrow{i}$	$B \xrightarrow{j}$	$C \longrightarrow$	0
\downarrow	$\downarrow \alpha$	$\downarrow \beta$	$\downarrow \gamma$	\downarrow
0	$\longrightarrow A' \xrightarrow{i'}$	$B' \xrightarrow{j'}$	$C' \longrightarrow$	0

with exact rows.

- (i) Prove that if α and γ are injective, then so is β .
- (ii) Prove that if α and γ are surjective, then so is β .
- **X**. Let X be the one-point union of two circles. For each of the following groups G, display a 4-fold covering
- (11) space of X with deck transformation group G: $\{1\}, C_2, C_2 \times C_2, C_4$ (you do not need to verify that those are the deck transformation groups). Display an infinite-sheeted covering space of X with fundamental group Z. Again, it is not necessary to verify that it is a covering, but use the single and double arrow method to clarify what the covering map is.