Instructions: Insofar as possible, give brief, clear answers. Use major theorems when possible.
I. Let $p:(\widetilde{X}, \widetilde{x}) \rightarrow(X, x)$ be a covering map, and let α be a loop in X based at x. Let $\widetilde{\alpha}$ be the lift of α (7) starting at \widetilde{x}. Prove that $\widetilde{\alpha}$ is a loop if and only if $[\alpha] \in p_{\#}\left(\pi_{1}(\widetilde{X}, \widetilde{x})\right)$.
II. Recall the proof that a path-connected, locally path-connected, semilocally simply connected space X has a (7) simply-connected covering space \widetilde{X}. Tell how the points of \widetilde{X} are defined, how the covering map $p: \widetilde{X} \rightarrow X$ is defined, and how the basic open sets in its topology are defined. You do not need to give any more details about the proof.
III. Define the following: Δ^{n}, a singular n-simplex, $C_{n}(X), C_{n}(X, A)$, a chain map, $f_{\#}, f_{*}$. Show how the fact (8) that $f_{\#}$ is a chain map proves that f_{*} is well-defined.
IV. State the Homotopy Extension Property. Use the fact that a subcomplex of a CW-complex has the HEP (6) to prove the following proposition: Let A be a subcomplex of a CW-complex X. Suppose that $f: A \rightarrow Y$ is a continuous map that extends to a continuous map $F: X \rightarrow Y$. Suppose further that $f \simeq g$. Then g extends to a continuous map $G: X \rightarrow Y$.
V. The figure to the right shows
(6) a certain covering space of the one-point union of two circles a and b.
(i) Label a and b with single and double arrows. Make a corresponding labeling of the covering space that indicates a particular covering map.

(ii) Here is a sloppy way to state the Lifting Criterion: Let $p: \widetilde{X} \rightarrow X$ be a covering map, and let $f: Y \rightarrow X$ be a continuous map. Then f lifts to a map $F: Y \rightarrow \widetilde{X}$ with $p F=f$ if and only if $f_{\#}\left(\pi_{1}(Y)\right) \subseteq p_{\#}\left(\pi_{1}(\widetilde{X})\right)$. Give a precise statement of the Lifting Criterion, taking basepoints into account.
(iii) Use the example of a covering map given in part (i) to explain why basepoints must be taken into account in stating the Lifting Criterion.
VI. Recall that the cone on a space A is the quotient space $C A=(A \times I) /(A \times\{1\})$. Let $A \subset X$, with A and
(6) $\quad X$ path-connected, and consider the quotient space $Y=X \cup C A$ obtained from X and $C A$ by identifying each $(a, 0) \in C A$ with $a \in A \subset X$. Let P be the cone point $[A \times\{1\}]$. Observe that $C A-(A \times\{0\})$ is contractible, and $Y-P$ deformation retracts to X (you do not need to give any argument, except drawing reasonable pictures). Use van Kampen's Theorem to give a description of $\pi_{1}\left(Y, y_{0}\right)$ at a basepoint y_{0} in $A \times(0,1)$. (You can be a bit informal, but try to stay close to the statement of van Kampen's Theorem.)
VII. The figure to the right shows a Δ-structure on a Möbius band X; the right and left sides of the square are identified as indicated to form the band. The Δ-structure has four 2 -simplices, seven 1 -simplices, and three 0 -simplices. The top and bottom horizontal 1 -simplices t and b form the boundary circle in X. The middle horizontal 1 -simplex m has its endpoints identified and forms the "core circle" C of X. Orient t, m, and b from left to right. It is easy to check that X deformation retracts to C (you do not need to prove this), so that the inclusion
 $i_{*}: H_{k}(C) \rightarrow H_{k}(X)$ is an isomorphism for each k.
(i) The core circle C has a Δ-structure with one 1 -simplex m and one 0 -simplex v. Use this to calculate the homology of C. Since X deformation retracts to C, the inclusion $C \rightarrow X$ is an isomorphism on homology groups.
(ii) The boundary circle D of M has a Δ-structure with two 1 -simplices t and b and two 0 -simplices x and y, the left and right endpoints of t. Use this Δ-structure to calculate the homology of D.
(iii) Label orientations on the four 2-simplices $\tau_{1}, \tau_{2}, \tau_{3}$, and τ_{4} and on t, m, and b so that the 2 -chain $c=$ $\tau_{1}+\tau_{2}+\tau_{3}+\tau_{4}$ has $\partial c=t+b-2 m$.
(iv) Use the chain in part (iii) (even if you did not find it explicitly) to explain why the inclusion $j: D \rightarrow X$ carries a generator of $H_{1}(D)$ to $2[m] \in H_{1}(X)$.
(v) Deduce that X does not retract to D.
VIII. Let F and G be chain maps from the chain complex $\cdots \rightarrow A_{n+1} \xrightarrow{\partial} A_{n} \xrightarrow{\partial} A_{n-1} \rightarrow \cdots$ to the chain complex
(5) $\quad \cdots \rightarrow B_{n+1} \xrightarrow{\partial} B_{n} \xrightarrow{\partial} B_{n-1} \rightarrow \cdots$. Define a chain homotopy from F to G. Verify that if P is a chain homotopy from F to G, then $F_{*}=G_{*}: H_{n}(A) \rightarrow H_{n}(B)$.
IX. Consider a commutative diagram of abelian groups and homomorphisms:

with exact rows.
(i) Prove that if α and γ are injective, then so is β.
(ii) Prove that if α and γ are surjective, then so is β.
X. Let X be the one-point union of two circles. For each of the following groups G, display a 4 -fold covering (11) space of X with deck transformation group G : $\{1\}, C_{2}, C_{2} \times C_{2}, C_{4}$ (you do not need to verify that those are the deck transformation groups). Display an infinite-sheeted covering space of X with fundamental group \mathbb{Z}. Again, it is not necessary to verify that it is a covering, but use the single and double arrow method to clarify what the covering map is.

