Mathematics 6813-001	Name (please print)			
Final Examination				
December 18, 2008				
	TT · /1	1	•1.1	

Instructions: Insofar as possible, give brief, clear answers. Use major theorems when possible.

I. Let $p: (\tilde{X}, \tilde{x}) \to (X, x)$ be a covering map, and let α be a loop in X based at x. Let $\tilde{\alpha}$ be the lift of α (7) starting at \tilde{x} . Prove that $\tilde{\alpha}$ is a loop if and only if $[\alpha] \in p_{\#}(\pi_1(\tilde{X}, \tilde{x}))$.

> Suppose first that $\tilde{\alpha}$ is a loop. Then $[\tilde{\alpha}] \in \pi_1(\tilde{X}, \tilde{x})$, and $p_{\#}[\tilde{\alpha}] = [p \circ \tilde{\alpha}] = [\alpha]$, so $[\alpha] \in p_{\#}(\pi_1(\tilde{X}, \tilde{x}))$. Conversely, suppose that $[\alpha] \in p_{\#}(\pi_1(\tilde{X}, \tilde{x}))$, say, $[\alpha] = p_{\#}[\beta] = [p \circ \beta]$. Choose a path homotopy from α to $p \circ \beta$. By the Homotopy Lifting Property, the homotopy lifts to a homotopy starting at $\tilde{\alpha}$ and ending at a lift of $p \circ \beta$. Since it is a lift of a path homotopy, the lifted homotopy is a path homotopy as well (because at the endpoints, it is a lift of the constant path, which must be a constant path by uniqueness of lifts). The lifted homotopy ends at a lift of $p \circ \beta$ starting at \tilde{x} , which by uniqueness of lifts must be β . Since β is a loop, so is $\tilde{\alpha}$.

II. Recall the proof that a path-connected, locally path-connected, semilocally simply connected space X has a simply-connected covering space \tilde{X} . Tell how the points of \tilde{X} are defined, how the covering map $p: \tilde{X} \to X$ is defined, and how the basic open sets in its topology are defined. You do not need to give any more details about the proof.

The elements of \widetilde{X} are path homotopy classes of paths in X that start at the basepoint x_0 of X. The covering map $p: \widetilde{X} \to X$ is defined by $p[\gamma] = \gamma(1)$.

The basic open sets are $U_{[\gamma]}$, where U is a path-connected open subset of X with $\pi_1(U) \to \pi_1(X)$ trivial at all basepoints, and γ is a path in X from x_0 to a point in U. The set $U_{[\gamma]}$ is then defined to be $\{[\gamma * \eta] \mid \eta \text{ is a path in } U \text{ starting at } \gamma(1)\}.$

III. Define the following: Δ^n , a singular n-simplex, $C_n(X)$, $C_n(X, A)$, a chain map, $f_{\#}$, f_* . Show how the fact (8) that $f_{\#}$ is a chain map proves that f_* is well-defined.

 Δ^n is the convex hull of the standard basis vectors $\{e_1, \ldots, e_{n+1}\}$ in \mathbb{R}^{n+1} . Explicitly, a point in Δ^n can be written in barycentric coordinates as $\sum_{i=1}^{n+1} t_i e_i$ where each $0 \le t_i \le 1$ and $\sum_{i=1}^{n+1} t_i = 1$. (One can also call the vertex set $[v_0, \ldots, v_n]$.)

A singular n-simplex is a continuous map $\sigma \colon \Delta^n \to X$.

 $C_n(X)$ is the free abelian group on the set of all singular *n*-simplices.

 $C_n(X, A)$ is the quotient group $C_n(X)/C_n(A)$.

A chain map between two chain complexes $\dots \to A_{n+1} \xrightarrow{\partial} A_n \xrightarrow{\partial} A_{n-1} \to \dots$ and $\dots \to B_{n+1} \xrightarrow{\partial} B_n \xrightarrow{\partial} B_{n-1} \to \dots$ is a collection of homomorphisms $\psi \colon A_n \to B_n$ such that $\partial \psi = \psi \partial$.

For a continuous map $f: X \to Y$, $f_{\#}$ is the homomorphism from $C_n(X)$ to $C_n(Y)$ defined by $f_{\#}(\sum n_i \sigma_i) = \sum n_i f \circ \sigma_i$.

For a continuous map $f: X \to Y$, f_* is the homomorphism from $H_n(X)$ to $H_n(Y)$ defined by $f_*[z] = [f_{\#}(z)]$.

To prove that f_* is well-defined, suppose that $[z_1] = [z_2]$. Then $\partial z_1 = \partial z_2 = 0$, and $z_1 = z_2 + \partial c$ for some (n + 1)-chain c. So $f_{\#}(z_1) = f_{\#}(z_2) + f_{\#}\partial(c) = f_{\#}(z_2) + \partial f_{\#}(c)$, so $[f_{\#}(z_1)] = [f_{\#}(z_2)]$ in $H_n(Y)$. [Alternatively, one can check that $f_{\#}$ takes cycles to cycles and boundaries to boundaries.]

IV. State the *Homotopy Extension Property*. Use the fact that a subcomplex of a CW-complex has the HEP (6) to prove the following proposition: Let A be a subcomplex of a CW-complex X. Suppose that $f: A \to Y$ is a continuous map that extends to a continuous map $F: X \to Y$. Suppose further that $f \simeq g$. Then g extends to a continuous map $G: X \to Y$.

> For $A \subset X$, one says that the pair (X, A) has the Homotopy Extension Property if whenever $f_t \colon A \to Y$ is a homotopy and $F_0 \colon X \to Y$ satisfies $F_0|_A = f_0$, F_0 is the starting map of a homotopy $F_t \colon X \to Y$ such that for each t, $F_t|_A = f_t$.

> To prove the proposition, we apply the Homotopy Extension Eroperty with f_t the homotopy from f to g and $F_0 = F$. The final map F_1 of the homotopy is then the desired extension G of g.

- - (ii) Here is a sloppy way to state the Lifting Criterion: Let $p: \widetilde{X} \to X$ be a covering map, and let $f: Y \to X$ be a continuous map. Then f lifts to a map $F: Y \to \widetilde{X}$ with pF = f if and only if $f_{\#}(\pi_1(Y)) \subseteq p_{\#}(\pi_1(\widetilde{X}))$. Give a precise statement of the Lifting Criterion, taking basepoints into account.

Let $p: (\widetilde{X}, \widetilde{x}) \to (X, x)$ be a covering map, and let $f: (Y, y) \to (X, x)$ be a basepoint-preserving continuous map. Then f lifts to a map $F: (Y, y) \to (\widetilde{X}, \widetilde{x})$ with pF = f if and only if $f_{\#}(\pi_1(Y, y)) \subseteq p_{\#}(\pi_1(\widetilde{X}, \widetilde{x}))$.

(iii) Use the example of a covering map given in part (i) to explain why basepoints must be taken into account in stating the Lifting Criterion.

Consider the inclusion of the left-hand circle into X. It lifts to a map to \widetilde{X} taking its basepoint to v, but not to a map taking its basepoint to w, since there is no edge that forms a loop at w. So the existence of a lift depends on the basepoint used in \widetilde{X} .

Page	3
------	---

VI. Recall that the cone on a space A is the quotient space $CA = (A \times I)/(A \times \{1\})$. Let $A \subset X$, with A and

(6) X path-connected, and consider the quotient space $Y = X \cup CA$ obtained from X and CA by identifying each $(a,0) \in CA$ with $a \in A \subset X$. Let P be the cone point $[A \times \{1\}]$. Observe that $CA - (A \times \{0\})$ is contractible, and Y - P deformation retracts to X (you do not need to give any argument, except drawing reasonable pictures). Use van Kampen's Theorem to give a description of $\pi_1(Y, y_0)$ at a basepoint y_0 in $A \times (0, 1)$. (You can be a bit informal, but try to stay close to the statement of van Kampen's Theorem.)

> Let $U = CA - (A \times \{0\})$ and V = Y - P. Since V deformation retracts to X, $\pi_1(V, y_0) \cong \pi_1(X, x_0)$ at some basepoint $x_0 \in X$. By van Kampen's Theorem (since $U \cap V = A \times (0, 1)$ is path-connected), the inclusions $i_{\#} \colon \pi_1(U, y_0) \to \pi_1(Y, y_0)$ and $j_{\#} \colon \pi_1(V, y_0) \to \pi_1(Y, y_0)$ induce a surjective homomorphism $\pi_1(U, y_0) \ast \pi_1(V, y_0) \to \pi_1(Y, y_0)$ whose kernel is the normal closure of the elements of the form $i_{\#}(\omega)j_{\#}(\omega^{-1})$ for $\omega \in \pi_1(U \cap V) \cong \pi_1(A)$. But U is contractible, so these are the elements $j_{\#}(\omega^{-1})$ for all $\omega \in \pi_1(U \times V)$. So the effect is to quotient out $\pi_1(X, x_0)$ by the normal closure of the image of $\pi_1(A, x_0)$ under the inclusion from A to X. That is, $\pi_1(X \cup CA) \cong \pi_1(X) / \ll i_{\#}\pi_1(A) \gg$.

VII. The figure to the right shows a Δ -structure on a Möbius band X; the (11) right and left sides of the square are identified as indicated to form the band. The Δ -structure has four 2-simplices, seven 1-simplices, and three 0-simplices. The top and bottom horizontal 1-simplices t and b form the boundary circle in X. The middle horizontal 1-simplex m has its endpoints identified and forms the "core circle" C of X. Orient t, m, and b from left to right. It is easy to check that X deformation retracts to C (you do not need to prove this), so that the inclusion $i_*: H_k(C) \to H_k(X)$ is an isomorphism for each k.

(i) The core circle C has a Δ -structure with one 1-simplex m and one 0-simplex v. Use this to calculate the homology of C. Since X deformation retracts to C, the inclusion $C \to X$ is an isomorphism on homology groups.

The Δ -chain complex $0 \to C_1(C) \xrightarrow{\partial_1} C_0(C) \to 0$ is $0 \to \mathbb{Z} \xrightarrow{\partial} \mathbb{Z} \to 0$, where the first summand is generated by m and the second by v. Since $\partial_1(m) = v - v = 0$, we have $H_1(C) = \ker(\partial_1)/\operatorname{im}(\partial_2) = \mathbb{Z}/\{0\} = \mathbb{Z}$ and $H_0(C) = \ker(\partial_0)/\operatorname{im}(\partial_1) = \mathbb{Z}/\{0\} = \mathbb{Z}$.

(ii) The boundary circle D of M has a Δ -structure with two 1-simplices t and b and two 0-simplices x and y, the left and right endpoints of t. Use this Δ -structure to calculate the homology of D.

The Δ -chain complex $0 \to C_1(C) \xrightarrow{\partial_1} C_0(C) \to 0$ is $0 \to \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{\partial} \mathbb{Z} \oplus \mathbb{Z} \to 0$, where the summands of the first $\mathbb{Z} \oplus \mathbb{Z}$ are generated by t and b and those of the second by x and y. We have $\partial_1(t) = y - x$ and $\partial_1(b) = x - y$, so $\ker(\partial_1) \cong \mathbb{Z}$ generated by t + b, giving $H_1(C) = \ker(\partial_1) / \operatorname{im}(\partial_2) = \mathbb{Z} \oplus \mathbb{Z} / (1, 1) \cong \mathbb{Z}$ generated by [t + b], and the image of δ_1 is generated by x - y so $H_0(C) = \ker(\partial_0) / \operatorname{im}(\partial_1) = \mathbb{Z} \oplus \mathbb{Z} / ((1, -1)) \cong \mathbb{Z}$.

(iii) Label orientations on the four 2-simplices τ_1 , τ_2 , τ_3 , and τ_4 and on t, m, and b so that the 2-chain $c = \tau_1 + \tau_2 + \tau_3 + \tau_4$ has $\partial c = t + b - 2m$.

(iv) Use the chain in part (iii) (even if you did not find it explicitly) to explain why the inclusion $j: D \to X$ carries a generator of $H_1(D)$ to $2[m] \in H_1(X)$.

We have
$$j_*[t+b] = [t+b] = [t+b - \partial_2(\tau_1 + \tau_2 + \tau_3 + \tau_4)] = [t+b-t-b+2m] = 2[m].$$

(v) Deduce that X does not retract to D.

Suppose that $r: X \to D$ is a retraction. We have ri equal to the identity on D, therefore r_*i_* is the identity on $H_1(D)$. But we have seen that $H_1(D) \xrightarrow{r_*} H_1(X) \xrightarrow{i_*} H_1(D)$ is $\mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}$, where the first homomorphism is multiplication by 2. So $1=r_*i_*(1)=r_*(2)=2r_*(1)$, which is even. This is a contradiction.

VIII. Let F and G be chain maps from the chain complex $\dots \to A_{n+1} \xrightarrow{\partial} A_n \xrightarrow{\partial} A_{n-1} \to \dots$ to the chain complex (5) $\dots \to B_{n+1} \xrightarrow{\partial} B_n \xrightarrow{\partial} B_{n-1} \to \dots$ Define a *chain homotopy* from F to G. Verify that if P is a chain homotopy from F to G, then $F_* = G_* \colon H_n(A) \to H_n(B)$.

A chain homotopy from F to G is a collection of homomorphisms $P: A_n \to B_{n+1}$ such that each $\partial P + P \partial = G - F$.

When a chain homotopy P exists, we have for any homology class $[z] \in H_n(A)$ that $G_*[z] - F_*[z] = [(G - F)(z)] = [\partial P(z) + P\partial(z)] = [\partial P(z)] = 0 \in H_n(B)$, using the facts that z is a cycle and the homology class of a boundary is 0. Therefore $F_*[z] = G_*[z]$.

IX. Consider a commutative diagram of abelian groups and homomorphisms:

with exact rows.

(i) Prove that if α and γ are injective, then so is β .

 $\ker(\beta) = 0$: Suppose that $\beta(b) = 0$. Then $0 = j'\beta(b) = \gamma(j(b))$. Since γ is injective, j(b) = 0 and by exactness there exists $a \in A$ with i(a) = b. We have $0 = \beta(b) = \beta(i(a)) = i'\alpha(a)$. Since i' is injective, this implies that $\alpha(a) = 0$, and since α is injective, a = 0. Therefore b = i(a) = 0.

(ii) Prove that if α and γ are surjective, then so is β .

 β is surjective: Let $b' \in B'$. Since γ is surjective, there exists a $c \in C$ with $\gamma(c) = j'(b)$, and since j is surjective, there exists a $b \in B$ with j(b) = c. So $j'(\beta(b)-b') = \gamma j(b)-j'(b) = \gamma(c)-j'(b) = j'(b)-j'(b) = 0$. Therefore there is an $a' \in A$ with $i'(a') = \beta(b) - b'$. Since α is surjective, there exists $a \in A$ with $\alpha(a) = a'$. Then, $\beta(b - i(a)) = \beta(b) - \beta i(a) = \beta(b) - i'\alpha(a) = \beta(b) - i'(a') = \beta(b) - (\beta(b) - b') = b'$.

X. Let X be the one-point union of two circles. For each of the following groups G, display a 4-fold covering (11) space of X with deck transformation group G: $\{1\}$, C_2 , $C_2 \times C_2$, C_4 (you do not need to verify that those are the deck transformation groups). Display an infinite-sheeted covering space of X with fundamental group Z. Again, it is not necessary to verify that it is a covering, but use the single and double arrow method to clarify what the covering map is.

