I. Let $p:(\widetilde{X}, \widetilde{x}) \rightarrow(X, x)$ be a covering map, and let α be a loop in X based at x. Let $\widetilde{\alpha}$ be the lift of α (7) starting at \widetilde{x}. Prove that $\widetilde{\alpha}$ is a loop if and only if $[\alpha] \in p_{\#}\left(\pi_{1}(\widetilde{X}, \widetilde{x})\right)$.

Suppose first that $\widetilde{\alpha}$ is a loop. Then $[\widetilde{\alpha}] \in \pi_{1}(\widetilde{X}, \widetilde{x})$, and $p_{\#}[\widetilde{\alpha}]=[p \circ \widetilde{\alpha}]=[\alpha]$, so $[\alpha] \in p_{\#}\left(\pi_{1}(\widetilde{X}, \widetilde{x})\right)$.
Conversely, suppose that $[\alpha] \in p_{\#}\left(\pi_{1}(\widetilde{X}, \widetilde{x})\right)$, say, $[\alpha]=p_{\#}[\beta]=[p \circ \beta]$. Choose a path homotopy from α to $p \circ \beta$. By the Homotopy Lifting Property, the homotopy lifts to a homotopy starting at $\widetilde{\alpha}$ and ending at a lift of $p \circ \beta$. Since it is a lift of a path homotopy, the lifted homotopy is a path homotopy as well (because at the endpoints, it is a lift of the constant path, which must be a constant path by uniqueness of lifts). The lifted homotopy ends at a lift of $p \circ \beta$ starting at \widetilde{x}, which by uniqueness of lifts must be β. Since β is a loop, so is $\widetilde{\alpha}$.
II. Recall the proof that a path-connected, locally path-connected, semilocally simply connected space X has a (7) simply-connected covering space \widetilde{X}. Tell how the points of \widetilde{X} are defined, how the covering map $p: \widetilde{X} \rightarrow X$ is defined, and how the basic open sets in its topology are defined. You do not need to give any more details about the proof.

The elements of \widetilde{X} are path homotopy classes of paths in X that start at the basepoint x_{0} of X.
The covering map $p: \widetilde{X} \rightarrow X$ is defined by $p[\gamma]=\gamma(1)$.
The basic open sets are $U_{[\gamma]}$, where U is a path-connected open subset of X with $\pi_{1}(U) \rightarrow \pi_{1}(X)$ trivial at all basepoints, and γ is a path in X from x_{0} to a point in U. The set $U_{[\gamma]}$ is then defined to be $\{[\gamma * \eta] \mid \eta$ is a path in U starting at $\gamma(1)\}$.
III. Define the following: Δ^{n}, a singular n-simplex, $C_{n}(X), C_{n}(X, A)$, a chain map, $f_{\#}, f_{*}$. Show how the fact (8) that $f_{\#}$ is a chain map proves that f_{*} is well-defined.
Δ^{n} is the convex hull of the standard basis vectors $\left\{e_{1}, \ldots, e_{n+1}\right\}$ in \mathbb{R}^{n+1}. Explicitly, a point in Δ^{n} can be written in barycentric coordinates as $\sum_{i=1}^{n+1} t_{i} e_{i}$ where each $0 \leq t_{i} \leq 1$ and $\sum_{i=1}^{n+1} t_{i}=1$. (One can also call the vertex set $\left[v_{0}, \ldots, v_{n}\right]$.)
A singular n-simplex is a continuous map $\sigma: \Delta^{n} \rightarrow X$.
$C_{n}(X)$ is the free abelian group on the set of all singular n-simplices.
$C_{n}(X, A)$ is the quotient group $C_{n}(X) / C_{n}(A)$.
A chain map between two chain complexes $\cdots \rightarrow A_{n+1} \xrightarrow{\partial} A_{n} \xrightarrow{\partial} A_{n-1} \rightarrow \cdots$ and $\cdots \rightarrow B_{n+1} \xrightarrow{\partial}$ $B_{n} \xrightarrow{\partial} B_{n-1} \rightarrow \cdots$ is a collection of homomorphisms $\psi: A_{n} \rightarrow B_{n}$ such that $\partial \psi=\psi \partial$.
For a continuous map $f: X \rightarrow Y, f_{\#}$ is the homomorphism from $C_{n}(X)$ to $C_{n}(Y)$ defined by $f_{\#}\left(\sum n_{i} \sigma_{i}\right)=\sum n_{i} f \circ \sigma_{i}$.
For a continuous map $f: X \rightarrow Y, f_{*}$ is the homomorphism from $H_{n}(X)$ to $H_{n}(Y)$ defined by $f_{*}[z]=$ $\left[f_{\#}(z)\right]$.
To prove that f_{*} is well-defined, suppose that $\left[z_{1}\right]=\left[z_{2}\right]$. Then $\partial z_{1}=\partial z_{2}=0$, and $z_{1}=z_{2}+\partial c$ for some $(n+1)$-chain c. So $f_{\#}\left(z_{1}\right)=f_{\#}\left(z_{2}\right)+f_{\#} \partial(c)=f_{\#}\left(z_{2}\right)+\partial f_{\#}(c)$, so $\left[f_{\#}\left(z_{1}\right)\right]=\left[f_{\#}\left(z_{2}\right)\right]$ in $H_{n}(Y)$. [Alternatively, one can check that $f_{\#}$ takes cycles to cycles and boundaries to boundaries.]

Page 2

IV. State the Homotopy Extension Property. Use the fact that a subcomplex of a CW-complex has the HEP (6) to prove the following proposition: Let A be a subcomplex of a CW-complex X. Suppose that $f: A \rightarrow Y$ is a continuous map that extends to a continuous map $F: X \rightarrow Y$. Suppose further that $f \simeq g$. Then g extends to a continuous map $G: X \rightarrow Y$.

For $A \subset X$, one says that the pair (X, A) has the Homotopy Extension Property if whenever $f_{t}: A \rightarrow Y$ is a homotopy and $F_{0}: X \rightarrow Y$ satisfies $\left.F_{0}\right|_{A}=f_{0}, F_{0}$ is the starting map of a homotopy $F_{t}: X \rightarrow Y$ such that for each $t,\left.F_{t}\right|_{A}=f_{t}$.
To prove the proposition, we apply the Homotopy Extension Eroperty with f_{t} the homotopy from f to g and $F_{0}=F$. The final map F_{1} of the homotopy is then the desired extension G of g.
V. The figure to the right shows
(6) a certain covering space of the one-point union of two circles a and b.
(i) Label a and b with single and double arrows. Make a corresponding labeling of the covering space that indicates a par-
 ticular covering map.

(ii) Here is a sloppy way to state the Lifting Criterion: Let $p: \widetilde{X} \rightarrow X$ be a covering map, and let $f: Y \rightarrow X$ be a continuous map. Then f lifts to a map $F: Y \rightarrow \widetilde{X}$ with $p F=f$ if and only if $f_{\#}\left(\pi_{1}(Y)\right) \subseteq p_{\#}\left(\pi_{1}(\widetilde{X})\right)$. Give a precise statement of the Lifting Criterion, taking basepoints into account.

Let $p:(\widetilde{X}, \widetilde{x}) \rightarrow(X, x)$ be a covering map, and let $f:(Y, y) \rightarrow(X, x)$ be a basepoint-preserving continuous map. Then f lifts to a map $F:(Y, y) \rightarrow(\widetilde{X}, \widetilde{x})$ with $p F=f$ if and only if $f_{\#}\left(\pi_{1}(Y, y)\right) \subseteq$ $p_{\#}\left(\pi_{1}(\widetilde{X}, \widetilde{x})\right)$.
(iii) Use the example of a covering map given in part (i) to explain why basepoints must be taken into account in stating the Lifting Criterion.

Consider the inclusion of the left-hand circle into X. It lifts to a map to \widetilde{X} taking its basepoint to v, but not to a map taking its basepoint to w, since there is no edge that forms a loop at w. So the existence of a lift depends on the basepoint used in \widetilde{X}.
VI. Recall that the cone on a space A is the quotient space $C A=(A \times I) /(A \times\{1\})$. Let $A \subset X$, with A and (6) $\quad X$ path-connected, and consider the quotient space $Y=X \cup C A$ obtained from X and $C A$ by identifying each $(a, 0) \in C A$ with $a \in A \subset X$. Let P be the cone point $[A \times\{1\}]$. Observe that $C A-(A \times\{0\})$ is contractible, and $Y-P$ deformation retracts to X (you do not need to give any argument, except drawing reasonable pictures). Use van Kampen's Theorem to give a description of $\pi_{1}\left(Y, y_{0}\right)$ at a basepoint y_{0} in $A \times(0,1)$. (You can be a bit informal, but try to stay close to the statement of van Kampen's Theorem.)

Let $U=C A-(A \times\{0\})$ and $V=Y-P$. Since V deformation retracts to $X, \pi_{1}\left(V, y_{0}\right) \cong \pi_{1}\left(X, x_{0}\right)$ at some basepoint $x_{0} \in X$. By van Kampen's Theorem (since $U \cap V=A \times(0,1)$ is path-connected), the inclusions $i_{\#}: \pi_{1}\left(U, y_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$ and $j_{\#}: \pi_{1}\left(V, y_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$ induce a surjective homomorphism $\pi_{1}\left(U, y_{0}\right) * \pi_{1}\left(V, y_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$ whose kernel is the normal closure of the elements of the form $i_{\#}(\omega) j_{\#}\left(\omega^{-1}\right)$ for $\omega \in \pi_{1}(U \cap V) \cong \pi_{1}(A)$. But U is contractible, so these are the elements $j_{\#}\left(\omega^{-1}\right)$ for all $\omega \in \pi_{1}(U \times V)$. So the effect is to quotient out $\pi_{1}\left(X, x_{0}\right)$ by the normal closure of the image of $\pi_{1}\left(A, x_{0}\right)$ under the inclusion from A to X. That is, $\pi_{1}(X \cup C A) \cong \pi_{1}(X) / \ll i_{\#} \pi_{1}(A) \gg$.
VII. The figure to the right shows a Δ-structure on a Möbius band X; the right and left sides of the square are identified as indicated to form the band. The Δ-structure has four 2 -simplices, seven 1 -simplices, and three 0 -simplices. The top and bottom horizontal 1 -simplices t and b form the boundary circle in X. The middle horizontal 1-simplex m has its endpoints identified and forms the "core circle" C of X. Orient t, m, and b from left to right. It is easy to check that X deformation retracts to C (you do not need to prove this), so that the inclusion
 $i_{*}: H_{k}(C) \rightarrow H_{k}(X)$ is an isomorphism for each k.
(i) The core circle C has a Δ-structure with one 1 -simplex m and one 0 -simplex v. Use this to calculate the homology of C. Since X deformation retracts to C, the inclusion $C \rightarrow X$ is an isomorphism on homology groups.

The Δ-chain complex $0 \rightarrow C_{1}(C) \xrightarrow{\partial_{1}} C_{0}(C) \rightarrow 0$ is $0 \rightarrow \mathbb{Z} \xrightarrow{\partial} \mathbb{Z} \rightarrow 0$, where the first summand is generated by m and the second by v. Since $\partial_{1}(m)=v-v=0$, we have $H_{1}(C)=\operatorname{ker}\left(\partial_{1}\right) / \operatorname{im}\left(\partial_{2}\right)=$ $\mathbb{Z} /\{0\}=\mathbb{Z}$ and $H_{0}(C)=\operatorname{ker}\left(\partial_{0}\right) / \operatorname{im}\left(\partial_{1}\right)=\mathbb{Z} /\{0\}=\mathbb{Z}$.
(ii) The boundary circle D of M has a Δ-structure with two 1 -simplices t and b and two 0 -simplices x and y, the left and right endpoints of t. Use this Δ-structure to calculate the homology of D.

The Δ-chain complex $0 \rightarrow C_{1}(C) \xrightarrow{\partial_{1}} C_{0}(C) \rightarrow 0$ is $0 \rightarrow \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{\partial} \mathbb{Z} \oplus \mathbb{Z} \rightarrow 0$, where the summands of the first $\mathbb{Z} \oplus \mathbb{Z}$ are generated by t and b and those of the second by x and y. We have $\partial_{1}(t)=y-x$ and $\partial_{1}(b)=$ $x-y$, so $\operatorname{ker}\left(\partial_{1}\right) \cong \mathbb{Z}$ generated by $t+b$, giving $H_{1}(C)=\operatorname{ker}\left(\partial_{1}\right) / \operatorname{im}\left(\partial_{2}\right)=\mathbb{Z} \oplus \mathbb{Z} /(1,1) \cong \mathbb{Z}$ generated by $[t+b]$, and the image of δ_{1} is generated by $x-y$ so $H_{0}(C)=\operatorname{ker}\left(\partial_{0}\right) / \operatorname{im}\left(\partial_{1}\right)=\mathbb{Z} \oplus \mathbb{Z} /\langle(1,-1) \cong \mathbb{Z}$.

Page 4
(iii) Label orientations on the four 2-simplices $\tau_{1}, \tau_{2}, \tau_{3}$, and τ_{4} and on t, m, and b so that the 2 -chain $c=$ $\tau_{1}+\tau_{2}+\tau_{3}+\tau_{4}$ has $\partial c=t+b-2 m$.

(iv) Use the chain in part (iii) (even if you did not find it explicitly) to explain why the inclusion $j: D \rightarrow X$ carries a generator of $H_{1}(D)$ to $2[m] \in H_{1}(X)$.

We have $j_{*}[t+b]=[t+b]=\left[t+b-\partial_{2}\left(\tau_{1}+\tau_{2}+\tau_{3}+\tau_{4}\right)\right]=[t+b-t-b+2 m]=2[m]$.
(v) Deduce that X does not retract to D.

Suppose that $r: X \rightarrow D$ is a retraction. We have $r i$ equal to the identity on D, therefore $r_{*} i_{*}$ is the identity on $H_{1}(D)$. But we have seen that $H_{1}(D) \xrightarrow{r_{*}} H_{1}(X) \xrightarrow{i_{*}} H_{1}(D)$ is $\mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}$, where the first homomorphism is multiplication by 2. So $1=r_{*} i_{*}(1)=r_{*}(2)=2 r_{*}(1)$, which is even. This is a contradiction.
VIII. Let F and G be chain maps from the chain complex $\cdots \rightarrow A_{n+1} \xrightarrow{\partial} A_{n} \xrightarrow{\partial} A_{n-1} \rightarrow \cdots$ to the chain complex $\cdots \rightarrow B_{n+1} \xrightarrow{\partial} B_{n} \xrightarrow{\partial} B_{n-1} \rightarrow \cdots$. Define a chain homotopy from F to G. Verify that if P is a chain homotopy from F to G, then $F_{*}=G_{*}: H_{n}(A) \rightarrow H_{n}(B)$.

A chain homotopy from F to G is a collection of homomorphisms $P: A_{n} \rightarrow B_{n+1}$ such that each $\partial P+P \partial=G-F$.
When a chain homotopy P exists, we have for any homology class $[z] \in H_{n}(A)$ that $G_{*}[z]-F_{*}[z]=$ $[(G-F)(z)]=[\partial P(z)+P \partial(z)]=[\partial P(z)]=0 \in H_{n}(B)$, using the facts that z is a cycle and the homology class of a boundary is 0 . Therefore $F_{*}[z]=G_{*}[z]$.
IX. Consider a commutative diagram of abelian groups and homomorphisms:
(8)

with exact rows.
(i) Prove that if α and γ are injective, then so is β.
$\operatorname{ker}(\beta)=0$: Suppose that $\beta(b)=0$. Then $0=j^{\prime} \beta(b)=\gamma(j(b))$. Since γ is injective, $j(b)=0$ and by exactness there exists $a \in A$ with $i(a)=b$. We have $0=\beta(b)=\beta(i(a))=i^{\prime} \alpha(a)$. Since i^{\prime} is injective, this implies that $\alpha(a)=0$, and since α is injective, $a=0$. Therefore $b=i(a)=0$.
(ii) Prove that if α and γ are surjective, then so is β.
β is surjective: Let $b^{\prime} \in B^{\prime}$. Since γ is surjective, there exists a $c \in C$ with $\gamma(c)=j^{\prime}(b)$, and since j is surjective, there exists a $b \in B$ with $j(b)=c$. So $j^{\prime}\left(\beta(b)-b^{\prime}\right)=\gamma j(b)-j^{\prime}(b)=\gamma(c)-j^{\prime}(b)=j^{\prime}(b)-j^{\prime}(b)=$ 0 . Therefore there is an $a^{\prime} \in A$ with $i^{\prime}\left(a^{\prime}\right)=\beta(b)-b^{\prime}$. Since α is surjective, there exists $a \in A$ with $\alpha(a)=a^{\prime}$. Then, $\beta(b-i(a))=\beta(b)-\beta i(a)=\beta(b)-i^{\prime} \alpha(a)=\beta(b)-i^{\prime}\left(a^{\prime}\right)=\beta(b)-\left(\beta(b)-b^{\prime}\right)=b^{\prime}$.

Page 5
Name (please print)
X. Let X be the one-point union of two circles. For each of the following groups G, display a 4 -fold covering
(11) space of X with deck transformation group G : $\{1\}, C_{2}, C_{2} \times C_{2}, C_{4}$ (you do not need to verify that those are the deck transformation groups). Display an infinite-sheeted covering space of X with fundamental group \mathbb{Z}. Again, it is not necessary to verify that it is a covering, but use the single and double arrow method to clarify what the covering map is.

