Mathematics 6813-001 Name (please print)
Final Examination

December 18, 2008
Instructions: Insofar as possible, give brief, clear answers. Use major theorems when possible.

I. Let p: (X,%) — (X,z) be a covering map, and let o be a loop in X based at x. Let a be the lift of o
(7) starting at Z. Prove that & is a loop if and only if [a] € py(m (X, Z)).

Suppose first that & is a loop. Then [a] € 71(X, %), and pxla] = [poal = [a], so [a] € py(m (X, 7).

Conversely, suppose that [a] € py(m (X,%)), say, [o] = p#[f] = [poB]. Choose a path homotopy from
a to po . By the Homotopy Lifting Property, the homotopy lifts to a homotopy starting at & and
ending at a lift of po 3. Since it is a lift of a path homotopy, the lifted homotopy is a path homotopy
as well (because at the endpoints, it is a lift of the constant path, which must be a constant path by
uniqueness of lifts). The lifted homotopy ends at a lift of p o 5 starting at =, which by uniqueness of
lifts must be 8. Since 3 is a loop, so is a.

II. Recall the proof that a path-connected, locally path-connected, semilocally simply connected space X has a

(7) simply-connected covering space X. Tell how the points of X are defined, how the covering map p: X=X
is defined, and how the basic open sets in its topology are defined. You do not need to give any more
details about the proof.

The elements of X are path homotopy classes of paths in X that start at the basepoint xg of X.
The covering map p: X — X is defined by ply] =~(1).

The basic open sets are Ul,), where U is a path-connected open subset of X with m(U) — m1(X)
trivial at all basepoints, and v is a path in X from z( to a point in U. The set Uy, is then defined to
be {[y*mn] | n is a path in U starting at v(1)}.

III.  Define the following: A", a singular n-simplex, Cp(X), Cp(X, A), a chain map, fy, f«. Show how the fact
(8) that fu is a chain map proves that f. is well-defined.

A" is the convex hull of the standard basis vectors {eq,..., e, 1} in R"™L. Explicitly, a point in A™
n+1 n+1

can be written in barycentric coordinates as Z t;e; where each 0 <t¢; <1 and Z t; = 1. (One can
i=1 i=1
also call the vertex set [vp, ..., vy].)

A singular n-simplex is a continuous map o: A" — X.
Cpn(X) is the free abelian group on the set of all singular n-simplices.

Cn(X,A) is the quotient group Cp(X)/Cr(A).

. . 0 1o} 1o}
A chain map between two chain complexes --- — Ay — A — Ay — -+ and -+ — By —

B, LA B,_1 — -+ is a collection of homomorphisms : A,, — B,, such that 0y = 0.

For a continuous map f: X — Y, fu is the homomorphism from C,(X) to C,(Y) defined by
S (3o nioi) = 3_ni f oo

For a continuous map f: X — Y, f, is the homomorphism from H,(X) to H,(Y') defined by f.[z] =
[f%(2)].

To prove that f, is well-defined, suppose that [z1] = [22]. Then 0z = dz9 = 0, and z; = 23 + Oc

for some (n + 1)-chain c. So fu(21) = fu(z2) + fr0(c) = fu(z2) + 0fx(c), so [fu(21)] = [fx(22)] in
H,,(Y'). [Alternatively, one can check that fu takes cycles to cycles and boundaries to boundaries.]
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IV.

(i)

(iii)

State the Homotopy Extension Property. Use the fact that a subcomplex of a CW-complex has the HEP
to prove the following proposition: Let A be a subcomplex of a CW-complex X. Suppose that f: A — Y
is a continuous map that extends to a continuous map F': X — Y. Suppose further that f ~ g. Then g
extends to a continuous map G: X — Y.

For A C X, one says that the pair (X, A) has the Homotopy Extension Property if whenever f;: A — Y
is a homotopy and Fy: X — Y satisfies Fy|a = fo, Fp is the starting map of a homotopy Fi: X — Y
such that for each ¢, Fy|4 = fi.

To prove the proposition, we apply the Homotopy Extension Eroperty with f; the homotopy from f
to g and Fy = F'. The final map F} of the homotopy is then the desired extension G of g.

The figure to the right shows
a certain covering space of
the one-point union of two
circles a and b.

Label a and b with single and
double arrows. Make a corre-

sponding labeling of the cover-
ing space that indicates a par- Q@

ticular covering map.

OO@;@@@Q

Here is a sloppy way to state the Lifting Criterion: Let p: X — X bea covering map, and let f: Y — X be
a continuous map. Then f lifts to a map F: Y — X with pF = f if and only if fu(m1(Y)) C pu(mi(X)).
Give a precise statement of the Lifting Criterion, taking basepoints into account.

Let p: (X,%Z) — (X, ) be a covering map, and let f: (Y,y) — (X,z) be a basepoint-preserving con-

tinuous map. Then f lifts to a map F': (Y,y) — (X,7) with pF' = f if and only if fu(m (Y,y)) C
py(m (X, 7)),

Use the example of a covering map given in part (i) to explain why basepoints must be taken into account
in stating the Lifting Criterion.

Consider the inclusion of the left-hand circle into X. It lifts to a map to X taking its basepoint to
v, but not to a map taking its basepoint to w, since there is no edge that forms a loop at w. So the
existence of a lift depends on the basepoint used in X.
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VI.  Recall that the cone on a space A is the quotient space CA = (A x I)/(A x {1}). Let A C X, with A and
(6) X path-connected, and consider the quotient space Y = X U C'A obtained from X and C'A by identifying
each (a,0) € CA with a € A C X. Let P be the cone point [A x {1}]. Observe that CA — (A x {0}) is
contractible, and Y — P deformation retracts to X (you do not need to give any argument, except drawing
reasonable pictures). Use van Kampen’s Theorem to give a description of m1(Y, o) at a basepoint yq in
A x (0,1). (You can be a bit informal, but try to stay close to the statement of van Kampen’s Theorem.)

Let U =CA—(Ax{0}) and V =Y — P. Since V deformation retracts to X, m1(V,yo) = m1(X, o) at
some basepoint xg € X. By van Kampen’s Theorem (since UNV = A x (0,1) is path-connected), the
inclusions i : m1 (U, yo) — m1(Y,yo) and ju: m1(V,y0) — m1(Y, y0) induce a surjective homomorphism
m1(U,yo) * m(V,y0) — 71(Y,yo) whose kernel is the normal closure of the elements of the form
ig(w)jg(w™t) for w e m(UNV) =7 (A). But U is contractible, so these are the elements ju(w™!)
for all w € m (U x V). So the effect is to quotient out m (X, z) by the normal closure of the image
of (A, zo) under the inclusion from A to X. That is, 7 (X UCA) = m(X)/ < ixmi(A) >.

VII. The figure to the right shows a A-structure on a Mébius band X; the

(11)  right and left sides of the square are identified as indicated to form
the band. The A-structure has four 2-simplices, seven 1-simplices, and
three O-simplices. The top and bottom horizontal 1-simplices ¢ and b
form the boundary circle in X. The middle horizontal 1-simplex m has
its endpoints identified and forms the “core circle” C' of X. Orient ¢,
m, and b from left to right. It is easy to check that X deformation
retracts to C' (you do not need to prove this), so that the inclusion
is: Hp(C) — Hp(X) is an isomorphism for each k.

(i) The core circle C' has a A-structure with one 1-simplex m and one 0-simplex v. Use this to calculate the
homology of C. Since X deformation retracts to C, the inclusion C' — X is an isomorphism on homology
groups.

The A-chain complex 0 — C1(C) o Co(C) - 0is 0 — Z 27— 0, where the first summand is
generated by m and the second by v. Since 01(m) = v — v = 0, we have H;(C) = ker(9;)/im(0s) =
Z /{0} = Z and Hy(C) = ker(9y)/im(d1) = Z /{0} = Z.

(ii) The boundary circle D of M has a A-structure with two 1-simplices ¢ and b and two O-simplices = and ,
the left and right endpoints of ¢. Use this A-structure to calculate the homology of D.

The A-chain complex 0 — C;(C) 9 Co(C) —0is0—ZZ 27207 — 0, where the summands of the
first Z @ Z are generated by ¢ and b and those of the second by 2 and y. We have 04 (t) = y—x and 0;(b) =
x —y, so ker(0;) = Z generated by t + b, giving H;(C) = ker(01)/im(02) =Z S Z /(1,1) = Z generated
by [t + b], and the image of d; is generated by z —y so Ho(C) = ker(dp)/im(01) =Z®Z /{(1,—-1) = Z.
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(iii) Label orientations on the four 2-simplices 71, T2, 73, and 74 and on ¢, m, and b so that the 2-chain ¢ =
T+ 7o +73+74 has dc =t + b — 2m.

VCmCV
yDbe

(iv) Use the chain in part (iii) (even if you did not find it explicitly) to explain why the inclusion j: D — X
carries a generator of Hy(D) to 2[m] € H1(X).

We have j [t +b] =[t+b]=[t+b—0a(ri+ T2 +7m3+74)] =[t+b—1t—b+2m] =2[m].
(v) Deduce that X does not retract to D.

Suppose that r: X — D is a retraction. We have ri equal to the identity on D, therefore r,i, is the
identity on H;(D). But we have seen that Hy(D) = H{(X) %> H{(D) is Z — 7Z — 7, where the
first homomorphism is multiplication by 2. So 1=r.i.(1) = r«(2) = 2r.(1), which is even. This is a
contradiction.

VIII. Let F and G be chain maps from the chain complex - -+ — A, 11 LA A, LA An_1 — -+ to the chain complex

(5) -o- — Bpy 9, B, LA B,_1 — ---. Define a chain homotopy from F to G. Verify that if P is a chain
homotopy from F to G, then F, = G.: Hy(A) — H,(B).

A chain homotopy from F' to G is a collection of homomorphisms P: A, — B,11 such that each
OP +P0=G—F.

When a chain homotopy P exists, we have for any homology class [z] € H,(A) that G.[z] — Fi[z] =
(G = F)(2)] = [0P(2) + PO(z)] = [0P(z)] = 0 € H,(B), using the facts that z is a cycle and the
homology class of a boundary is 0. Therefore Fy[z] = G[z].

IX.  Consider a commutative diagram of abelian groups and homomorphisms:

®) 0 A—~B-2.cC 0
I A L
0 U e Aol

with exact rows.
(i) Prove that if « and ~y are injective, then so is (.

ker(3) = 0: Suppose that 5(b) = 0. Then 0 = j/5(b) = ~(j(b)). Since v is injective, j(b) = 0 and by
exactness there exists a € A with i(a) = b. We have 0 = 3(b) = ((i(a)) = 'a(a). Since i’ is injective,
this implies that a(a) = 0, and since « is injective, a = 0. Therefore b = i(a) = 0.

(ii) Prove that if @ and 7 are surjective, then so is (3.
B is surjective: Let b’ € B’. Since 7 is surjective, there exists a ¢ € C with v(c¢) = j/(b), and since j is
surjective, there exists a b € B with j(b) = ¢. So 5/ (8(b)—b") = vj(b)—35'(b) = v(c)—35'(b) = 7' (b)—j'(b) =
0. Therefore there is an @’ € A with i/(a’) = B(b) — V/. Since « is surjective, there exists a € A with

a(a) = a’. Then, 5(b —i(a)) = B(b) — Bi(a) = B(b) —i'aa) = B(b) —i'(d') = B(b) — (B(b) — V) =V".
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Let X be the one-point union of two circles. For each of the following groups G, display a 4-fold covering
space of X with deck transformation group G: {1}, Ca, Cy x Cs, Cy (you do not need to verify that those
are the deck transformation groups). Display an infinite-sheeted covering space of X with fundamental
group Z. Again, it is not necessary to verify that it is a covering, but use the single and double arrow
method to clarify what the covering map is.




