Mathematics 1823-030	Name (please print)
Final Examination Form A	Student Number
December 15, 2009	

I.	The Mean Value	Theorem im	plies that if a :	$\mathbb{R} \to \mathbb{R}$ is a	differentiable	function and	a'(x) = 0	for all x , then

(5) g is constant (do not verify this). Apply this fact to verify that if $f: \mathbb{R} \to \mathbb{R}$ is a differentiable function and F_1 and F_2 are antiderivatives of f, then there exists some constant C such that $F_1(x) = F_2(x) + C$ for all x.

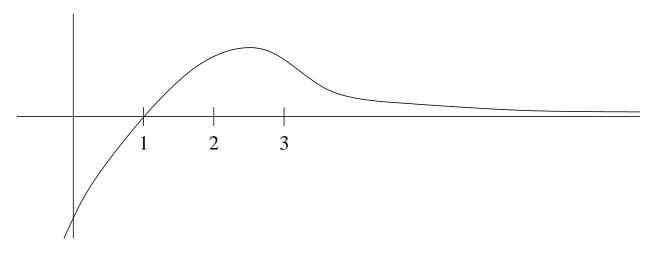
- II. (a) Write the precise (i. e. epsilon-delta) definition of $\lim_{x\to 3} 2x + 5 = 11$.
 - (b) Use the precise definition to verify that $\lim_{x\to 3} 2x + 5 = 11$.

A farmer wants to fence an area of 150 square meters in a rectangular field and then divide it in half with a fence parallel to one of the sides of the rectangle. How can this be done so as to minimize the cost of the fence?

IV. The graph below shows a function f having a root at x = 1.

(4)

- (a) Suppose that Newton's method is applied starting the iteration with $x_1 = 2$. On the graph below, indicate where x_2 , x_3 , and x_4 would be, drawing appropriate tangent lines to clarify the relation of each iterate with the previous one.
- (b) Similarly, starting over with $x_1 = 3$ on the same graph below, indicate what x_2 , x_3 , and x_4 would be in that case.



V. The Law of Cosines formula is $c^2 = a^2 + b^2 - 2ab\cos(\theta)$. Let T be a triangle with two sides of lengths $2\sqrt{2}$ (6) meters and 3 meters, and suppose that the angle θ between them is increasing at a rate of $\sqrt{5}$ radians per second. Sketch and label the triangle, and use the Law of Cosines to find the rate of change of the length of the third side when $\theta = \pi/4$.

VI. A certain differentiable function f(x) satisfies f(1) = 3 and f'(x) > 5 for all x. Use the Mean Value (4) Theorem to verify that f(4) > 18.

VII. Calculate $\frac{dy}{dx}$ if $\sqrt{x^2 + y^2} = \sin(y)$.

VIII. Calculate each of the following limits:

$$\begin{array}{c}
(6) \\
1. \lim_{x \to \infty} \frac{x}{\sqrt{x^2 + x}}
\end{array}$$

$$2. \lim_{x \to -\infty} \frac{x}{\sqrt{x^2 + x}}$$

$$3. \lim_{x \to 0} \frac{\sin(7x)}{x}$$

IX. Find each of the following:

(12)

- 1. The most general form for an antiderivative of $\csc^2(x) + 8x^3 \sqrt{x}$ on the interval $0 < x < \pi$.
- 2. f(x), if $f'(x) = 6x^2 2$ and $f(\pi) = 2\pi^3$.
- 3. The most general form for f(x) if f''(x) = 12x 4.
- 4. The differential of the function $\sec^2(2x)$.

- X. Let $f: \mathbb{R} \to \mathbb{R}$ (i. e. let f be a function from the real numbers to the real numbers). In the blank to the left of each of the following questions, write the letter of the best response.
- 1. _____ What type of mathematical object is the graph of f?
 - A) set
- B) function
- C) equation
- D) codomain
- E) number
- F) operation
- 2. _____ If it exists, what type of mathematical object is $\lim_{x\to 2} f(x)$?
- A) set
- B) function
- C) equation
- D) codomain
- E) number
- F) operation
- 3. _____ If it exists, what type of mathematical object is $\lim_{x\to\infty} f(x)$?
- A) set
- B) function
- C) equation
- D) codomain
- E) number
- F) operation
- 4. _____ If it exists, what type of mathematical object is an antiderivative of f?
 - A) set
- B) function
- C) equation
- D) codomain
- E) number
- F) operation

- 5. _____ What type of mathematical object is $f \circ f$?
 - A) set
- B) function
- C) equation
- D) codomain
- E) number
- F) operation
- 6. _____ What type of mathematical object is composition of functions?
 - A) set
- B) function
- C) equation
- D) codomain
- E) number
- F) operation

- XI. The table to the right shows the values of the func-
- tions f, g, f', and g' at the x-values 1, 2, 3, and (6)4. For example, f(4) = 2 and f'(4) = 4. Write the value of each of the following:

x	f(x)	f'(x)	g(x)	g'(x)
1	2	3	1	4
2	3	2	4	1
3	4	1	4	2
4	2	4	1	2

$$(g \cdot f)'(3) = \underline{\qquad} (g \circ f)'(1) = \underline{\qquad} (f/g)'(3) = \underline{\qquad} (g \circ g)'(4) = \underline{\qquad}$$

$$(f/g)'(3) = \underline{\qquad} \qquad (g$$

$$(g \circ g)'(4) = \underline{\hspace{1cm}}$$

- Let $g: \mathbb{R} \to \mathbb{R}$ be a function, not necessarily differentiable or continuous. Label each of the following XII. statements either T for true or F for false. (12)
- If $\lim_{x\to a} g(x)$ exists, then g must be continuous at a.
 - If g is continuous at a, then $\lim_{x\to a} g(x)$ must exist.
 - The Extreme Value Theorem applies only to differentiable functions.
 - If g is continuous at a, then it must be differentiable at a.
 - If g is differentiable at a, then it must be continuous at a.
 - If f is continuous on a closed interval [a, b], and N is any value between a and b, then there must exist c between f(a) and f(b) such that f(c) = N.
 - Both of the functions $\cos^2(x)$ and $\cos^2(x) + 5$ are antiderivatives of $-2\sin(x)$.
 - Every function of the form $\frac{1}{x} + C$ for some value of C is an antiderivative of the function $-\frac{1}{x^2}$.
 - Every antiderivative of the function $-\frac{1}{r^2}$ is of the form $\frac{1}{r} + C$ for some value of C.
 - Newton's method can be applied to find approximations to solutions to equations, as well as to find approximations to roots.
 - If g is differentiable and G is an antiderivative of g, then g' tells the concavity of G.
 - If g is differentiable and G is an antiderivative of g, then g' tells where G is increasing or decreasing.