Mathematics 1823-030	Name (please print)
Final Examination Form A	Student Number
December 15, 2009	

- **I**. The Mean Value Theorem implies that if $g: \mathbb{R} \to \mathbb{R}$ is a differentiable function and g'(x) = 0 for all x, then
- (5) g is constant (do not verify this). Apply this fact to verify that if $f: \mathbb{R} \to \mathbb{R}$ is a differentiable function and F_1 and F_2 are antiderivatives of f, then there exists some constant C such that $F_1(x) = F_2(x) + C$ for all x.

 $\frac{d}{dx}(F_1(x) - F_2(x)) = F'_1(x) - F'_2(x) = 0 \text{ for all } x. \text{ Therefore there exists a constant } C \text{ so that } F_1(x) - F_2(x) = C. \text{ That is, } F_1(x) = F_2(x) + C.$

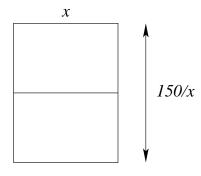
II. (a) Write the precise (i. e. epsilon-delta) definition of $\lim_{x \to 3} 2x + 5 = 11$. (7)

For every $\epsilon > 0$, there exists $\delta > 0$ such that if $0 < |x - 3| < \delta$, then $|2x + 5 - 11| < \epsilon$.

(b) Use the precise definition to verify that $\lim_{x\to 3} 2x + 5 = 11$.

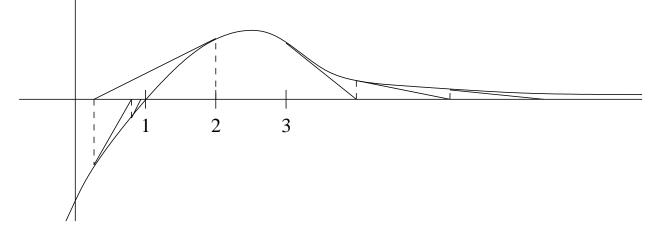
Let $\epsilon > 0$ be given. Put $\delta = \epsilon/2$. If $0 < |x-3| < \delta$, then $|2x+5-11| = |2x-6| = 2|x-3| < 2\delta = \epsilon$.

- III. A farmer wants to fence an area of 150 square meters in a rectangular field and then divide it in half with
- (7) a fence parallel to one of the sides of the rectangle. How can this be done so as to minimize the cost of the fence?

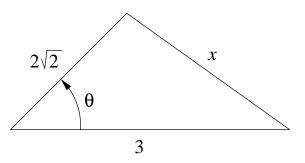


The total length of fence is $L(x) = 3x + 2\frac{150}{x} = 3x + \frac{300}{x}$, where x > 0. We have $L'(x) = 3 - \frac{300}{x^2}$, which has a critical number only when $\frac{300}{x^2} = 3$, that is, when $x = \sqrt{100} = 10$. Since $L''(x) = \frac{600}{x^3} > 0$, L(x) has an absolute minimum at x = 10. So the dimensions are 10 in the direction of the three fences, and $\frac{150}{10} = 15$ in the other direction.

- **IV**. The graph below shows a function f having a root at x = 1.
- (4) (a) Suppose that Newton's method is applied starting the iteration with $x_1 = 2$. On the graph below, indicate where x_2 , x_3 , and x_4 would be, drawing appropriate tangent lines to clarify the relation of each iterate with the previous one.
 - (b) Similarly, starting over with $x_1 = 3$ on the same graph below, indicate what x_2 , x_3 , and x_4 would be in that case.



V. The Law of Cosines formula is c² = a² + b² - 2ab cos(θ). Let T be a triangle with two sides of lengths 2√2
(6) meters and 3 meters, and suppose that the angle θ between them is increasing at a rate of √5 radians per second. Sketch and label the triangle, and use the Law of Cosines to find the rate of change of the length of the third side when θ = π/4.



We have $\frac{d\theta}{dt} = \sqrt{5}$ and we want to find $\frac{dx}{dt}$ when $\theta = \pi/4$. Using the Law of Cosines and differentiating gives

$$x^{2} = (2\sqrt{2})^{2} + 3^{2} - 2 \cdot 2\sqrt{2} \cdot 3 \cdot \cos(\theta)$$
$$x^{2} = 17 - 12\sqrt{2} \cos(\theta)$$
$$2x \frac{dx}{dt} = 12\sqrt{2} \sin(\theta) \frac{d\theta}{dt}$$
$$x \frac{dx}{dt} = 6\sqrt{2} \sin(\theta) \frac{d\theta}{dt}$$

When $\theta = \pi/4$, we have $x^2 = 17 - 12\sqrt{2}/\sqrt{2} = 5$ so $x = \sqrt{5}$, giving

$$\sqrt{5} \frac{dx}{dt} = 6\sqrt{2}(1/\sqrt{2})(\sqrt{5}) = 6\sqrt{5}$$
, so $\frac{dx}{dt} = 6$

The third side is increasing at a rate of 6 m/sec.

By the Mean Value Theorem, f(4) - f(1) = f'(c)(4-1) = 3f'(c) for some c between 1 and 4. Since f'(c) > 5, this becomes $f(4) - 3 > 3 \cdot 5$, so f(4) > 18.

VII. Calculate $\frac{dy}{dx}$ if $\sqrt{x^2 + y^2} = \sin(y)$. (5)

Using implicit differentiation,

$$\frac{1}{2} \frac{1}{\sqrt{x^2 + y^2}} \left(2x + 2y \frac{dy}{dx} \right) = \cos(y) \frac{dy}{dx}$$
$$x + y \frac{dy}{dx} = \cos(y) \sqrt{x^2 + y^2} \frac{dy}{dx}$$
$$x = \left(\cos(y) \sqrt{x^2 + y^2} - y \right) \frac{dy}{dx}$$
$$\frac{dy}{dx} = \frac{x}{\cos(y) \sqrt{x^2 + y^2} - y}$$

VIII. Calculate each of the following limits: (6)

$$\lim_{x \to \infty} \frac{x}{\sqrt{x^2 + x}} = \lim_{x \to \infty} \frac{x}{x\sqrt{1 + 1/x}} = \lim_{x \to \infty} \frac{1}{\sqrt{1 + 1/x}} = \frac{1}{\sqrt{1 + 0}} = 1$$
2.
$$\lim_{x \to -\infty} \frac{x}{\sqrt{x^2 + x}} = \lim_{x \to -\infty} \frac{x}{-x\sqrt{1 + 1/x}} = \lim_{x \to -\infty} \frac{1}{-\sqrt{1 + 1/x}} = \frac{1}{-\sqrt{1 + 0}} = -1$$
3.
$$\lim_{x \to 0} \frac{\sin(7x)}{x} = \frac{1}{\sqrt{1 + 0}} = -1$$

$$\lim_{x \to 0} \frac{\sin(7x)}{x} = \lim_{x \to 0} 7 \frac{\sin(7x)}{7x} = 7 \cdot 1 = 7$$

IX. Find each of the following:

- (12)
 - 1. The most general form for an antiderivative of $\csc^2(x) + 8x^3 \sqrt{x}$ on the interval $0 < x < \pi$.

$$-\cot(x) + \frac{8x^4}{4} - \frac{x^{3/2}}{3/2} + C = -\cot(x) + \frac{2x^4}{2} - \frac{2x^{3/2}}{3} + C$$

2. f(x), if $f'(x) = 6x^2 - 2$ and $f(\pi) = 2\pi^3$.

We have for some C that $f(x) = 6x^3/3 - 2x + C = 2x^3 - 2x + C$. When $x = \pi$, this is $2\pi^3 = 2\pi^3 - 2\pi + C$, so $C = 2\pi$ and therefore $f(x) = 2x^3 - 2x + 2\pi$.

3. The most general form for f(x) if f''(x) = 12x - 4.

The most general form for f'(x) is $f'(x) = \frac{12x^2}{2} - 4x + C = 6x^2 - 4x + C$, so the most general form for f(x) is $f(x) = \frac{6x^3}{3} - \frac{4x^2}{2} + Cx + C_1 = \frac{2x^3}{2} - \frac{2x^2}{2} + Cx + C_1$, where C and C₁ can be any constants.

4. The differential of the function $\sec^2(2x)$.

The derivative of $\sec^2(2x)$ is $2\sec(2x) \cdot \sec(2x) \tan(2x) \cdot 2 = 4\sec^2(2x)\tan(2x)$, so $d(\sec^2(2x)) = 4\sec^2(2x)\tan(2x) dx$.

- **X**. Let $f: \mathbb{R} \to \mathbb{R}$ (i. e. let f be a function from the real numbers to the real numbers). In the blank to the (6) left of each of the following questions, write the letter of the best response.
- 1. A What type of mathematical object is the graph of f? A) set B) function E) number F) operation C) equation D) codomain 2. E If it exists, what type of mathematical object is $\lim_{x \to 2} f(x)$? A) set B) function C) equation D) codomain E) number F) operation 3. E If it exists, what type of mathematical object is $\lim_{x \to \infty} f(x)$? A) set B) function C) equation D) codomain E) number F) operation 4. B If it exists, what type of mathematical object is an antiderivative of f? A) set B) function C) equation D) codomain E) number F) operation 5. B What type of mathematical object is $f \circ f$? A) set B) function C) equation D) codomain E) number F) operation 6. F What type of mathematical object is composition of functions? A) set B) function C) equation D) codomain E) number F) operation

- **XI**. The table to the right shows the values of the func-(6) tions f, g, f', and g' at the x-values 1, 2, 3, and
- 4. For example, f(4) = 2 and f'(4) = 4. Write the value of each of the following:

x	f(x)	f'(x)	g(x)	g'(x)
1	2	3	1	4
2	3	2	4	1
3	4	1	4	2
4	2	4	1	2

$$(g \cdot f)'(3) = 12$$
 $(g \circ f)'(1) = 3$ $(f/g)'(3) = -\frac{1}{4}$ $(g \circ g)'(4) = 8$

- **XII.** Let $g: \mathbb{R} \to \mathbb{R}$ be a function, not necessarily differentiable or continuous. Label each of the following (12) statements either T for true or F for false.
 - <u>F</u> If $\lim_{x \to a} g(x)$ exists, then g must be continuous at a.
 - <u>T</u> If g is continuous at a, then $\lim_{x \to a} g(x)$ must exist.
 - F The Extreme Value Theorem applies only to differentiable functions.
 - F If g is continuous at a, then it must be differentiable at a.
 - T If g is differentiable at a, then it must be continuous at a.

<u>F</u> If f is continuous on a closed interval [a, b], and N is any value between a and b, then there must exist c between f(a) and f(b) such that f(c) = N.

F Both of the functions $\cos^2(x)$ and $\cos^2(x) + 5$ are antiderivatives of $-2\sin(x)$.

<u>T</u> Every function of the form $\frac{1}{x} + C$ for some value of C is an antiderivative of the function $-\frac{1}{x^2}$.

<u>F</u> Every antiderivative of the function $-\frac{1}{x^2}$ is of the form $\frac{1}{x} + C$ for some value of C.

T Newton's method can be applied to find approximations to solutions to equations, as well as to find approximations to roots.

T If g is differentiable and G is an antiderivative of g, then the sign of g' tells the concavity of G.

<u>F</u> If g is differentiable and G is an antiderivative of g, then the sign of g' tells where G is increasing or decreasing.