Mathematics 1823-030
Examination I Form A
September 21, 2009

Name (please print)

Student Number

(1) **Discussion Section** (circle day and time):

Th 9:00 Th 1:30 Th 3:00 F 8:30 F 9:30 F 2:30

I.	The table to the right shows the values of two func-
(4)	tions f and g at the x -values 0, 1, 2, 3, and 4. For
	example, $f(1) = 3$ and $g(1) = 0$. Write the value of

tions f and g at the x -values 0, 1, 2, 3, and 4. For
example, $f(1) = 3$ and $g(1) = 0$. Write the value of
each of the following:

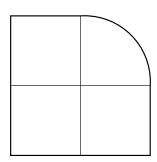
$$(g \circ f)(3) =$$
 _____ $(f \circ g)(3) =$ _____ $(f \cdot f)(3) =$ _____

$$(f \circ q)(3) =$$

$$(f \cdot f)(3) =$$

$$(f \circ f)(3) = \underline{\hspace{1cm}}$$

II. In the blank to the left of each of the following questions, write the letter of the best response. (12)

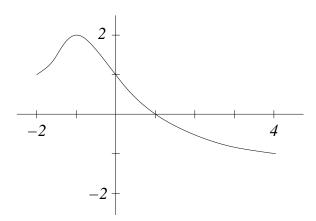

1. Let $f: \mathbb{R} \to \mathbb{R}$ (i. e. let f be a function from the real numbers to the real numbers). What type of mathematical object is the graph of f?

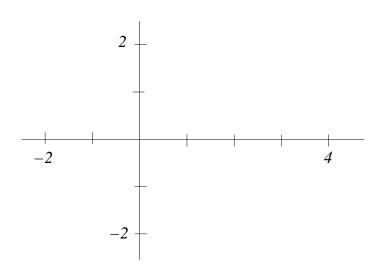
- A) set
- B) function
- C) equation
- D) codomain
- E) number
- F) velocity

2. _____ What type of mathematical object is $\lim_{x\to 2} \sin^3(x)$?

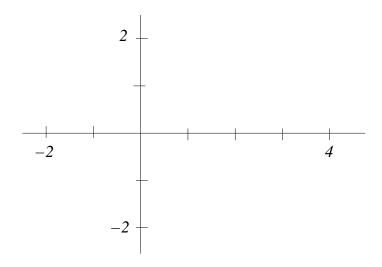
- A) set
- B) function
- C) equation
- D) codomain
- E) number
- F) velocity

The next two questions refer to the figure to the right. It shows a window consisting of four panes, three of which are squares and one of which is a quarter of a disk. The width of the entire window is x.

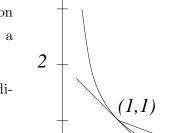

3. Which of the following is an expression for the *perimeter* of the window as a function of x?


- A) $2x + \pi x/2$ B) $2x + \pi x/4$ C) $2x + \pi x^2/2$ D) $2x + \pi x^2/4$ E) $3x + \pi x/2$ F) $3x + \pi x/4$ G) $3x + \pi x^2/2$ H) $3x + \pi x^2/4$ I) $6x + \pi x/2$ J) $6x + \pi x/4$ K) $6x + \pi x^2/2$ L) $6x + \pi x^2/4$

4. _____ Which of the following is an expression for the area of the window as a function of x?


- A) $3x^2 + \pi x^2/16$ B) $3x^2/2 + \pi x^2/16$ C) $3x^2/4 + \pi x^2/16$ D) $3x^2 + \pi x^2/4$ E) $3x^2/2 + \pi x^2/4$ F) $3x^2/4 + \pi x^2/4$ G) $3x^2 + \pi x^2/2$ H) $3x^2/2 + \pi x^2/2$ I) $3x^2/4 + \pi x^2/2$ J) $3x^2 + \pi x^2$ K) $3x^2/2 + \pi x^2$ L) $3x^2/4 + \pi x^2/4$

III. The figure to the right shows the graph of a certain func-(4) tion $f: [-2,4] \to \mathbb{R}$. On the coordinate system shown below, sketch the graph of the reciprocal function $\frac{1}{f(x)}$. Make the y-values reasonably accurate, based on the values of f(x).


IV. On the coordinate system shown below, sketch the graph of a function f that satisfies all of the following: (5) $\lim_{x \to -1} f(x) \text{ exists but } f \text{ is not continuous at } x = -1, \lim_{x \to 1} f(x) = -\infty, \lim_{x \to 3^{-}} f(x) = 0, \text{ and } \lim_{x \to 3^{+}} f(x) = 1.$

V. Use completing the square and translation to graph the function $y = x^2 + 6x + 8$.

(4)

VI. The figure to the right shows a portion of the graph of the function $f(x) = \frac{1}{x}$. It also shows the tangent line at the point (1,1), and a typical secant line.

1

1+h

- (a) One of the endpoints of the secant line is (1,1). Give the coordinates of the other endpoint in terms of h.
- (b) Calculate the slope of the secant line as a function m_h of h.

(c) Evaluate the limit $\lim_{h\to 0} m_h$ to find the slope m_{tan} of the tangent line at (1,1).

VII. Define what it means to say that a function f is *continuous at* x_0 . State the Intermediate Value Theorem. (5)

VIII. State the precise, formal (i. e. using ϵ and δ) definition of: $\lim_{x \to \pi/4} \cos(x) = 1/\sqrt{2}$. (3)

IX. Determine the following limits (not by plugging in values, and not by using l'Hôpital's rule).

(8)
1. $\lim_{h \to 2} \frac{\sqrt{h+2}-2}{h-2}$

2. $\lim_{x \to -3^+} \frac{1+x}{3+x}$