Mathematics 1823-030
Examination III Form A
November 23, 2009

Name (please print)

Student Number

(1) **Discussion Section** (circle day and time):

Th 9:00 Th 1:30 Th 3:00 F 8:30 F 9:30 F 2:30

- I. In this problem, $f(x) = \frac{2}{x} + \frac{1}{x^2}$, which can also be written as $\frac{2}{x^2}(x + \frac{1}{2})$. The first and second derivatives of f are $f'(x) = -\frac{2}{x^2} \frac{2}{x^3}$ and $f''(x) = \frac{4}{x^3} + \frac{6}{x^4}$ (do not check these)
 - 1. Find the root or roots of f.
 - 2. Find $\lim_{x\to\infty} f(x)$.
 - 3. Find the critical number or critical numbers of f.
 - 4. Find the inflection point or inflection points of f.
 - 5. Find $\lim_{x\to 0^+} f(x)$ and $\lim_{x\to 0^-} f(x)$.
- II. (a) Find the differential of \sqrt{x} .

(7)

(b) Use linear approximation to estimate $\sqrt{8.994}$.

III. (8)	A boat is pulled into a dock by a rope attached to the bow of the boat and passing through a pulley on the dock that is 3 m higher than the bow of the boat. The rope is pulled at a rate of 3 m/sec.
(a)	Draw and label a figure that illustrates this situation.
(b)	How fast is the boat approaching the dock when it is 9 m from the dock?
IV . (8)	State the Mean Value Theorem, including its hypotheses.
(b)	For the function \sqrt{x} on the interval $[0,4]$, find a number c that satisfies the conclusion of the Mean Value Theorem.

- **V**. Use the Mean Value Theorem to verify the following fact: Suppose that $f:[a,b] \to \mathbb{R}$ is continuous on [a,b]
- (4) and differentiable on (a,b). If f'(x) > 0 for a < x < b, then f(a) < f(b).

VI. A certain differentiable function f has domain all real numbers except x = -2, and has the following (8) properties:

(a)
$$f(-3) = -1$$
, $f(1) = 1$, $f(3) = 2$

(b)
$$f'(-3) = 0$$
, $f'(1) = 0$.

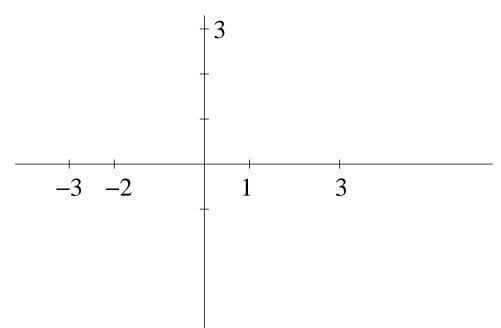
(c)
$$\lim_{x \to -2} f(x) = -\infty.$$

(d)
$$f''(x) < 0$$
 for $x < -2$, for $-2 < x < 1$, and for $3 < x$.

(e)
$$f''(x) > 0$$
 for $1 < x < 3$.

(f)
$$\lim_{x \to \infty} f(x) = 3$$
.

Sketch a possible graph of f, using all of the above information.



/ II . 10)	Let $f:[a,b]\to\mathbb{R}$ be a function which is continuous on $[a,b]$ and differentiable on (a,b) . Label each of the following statements either T for true or F for false.
	If $f'(x) < 0$ for $a < x < b$, then $f(a) < f(b)$.
	If a and b are roots of f, then there must exist a number c between a and b for which $f'(c) = 0$.
	The Mean Value Theorem can be deduced from Rolle's Theorem.
	The Mean Value Theorem is a special case of Rolle's Theorem.
	If $f(a) < f(b)$, then there must exist a number c between a and b for which $f'(c) > 0$.
	There must exist a number c in the interval $[a,b]$ such that $f(c) \ge f(x)$ for all x in $[a,b]$.
	If f were not continuous on $[a, b]$, then it could still have an absolute maximum or absolute minimum value on $[a, b]$, but not both.
	If c is an interior point of the interval and $f'(c) = 0$, then f must have either a local maximum or a local minimum (or both) at c.
	If $f''(x)$ changes sign at c , then c is an inflection point of f .
•	If $f(x)$ equals the mass of the portion of a metal rod between 0 and x , then $f'(x)$ is the density function of the rod.