Mathematics 1823-030 Examination III Form B November 23, 2009		Name (please print) Student Number (1) Discussion Section (circle day and time): Th 9:00 Th 1:30 Th 3:00 F 8:30 F 9:30 F 2:30					F 2:30
I . (7)	(a) Find the differential of \sqrt{x} .						
(1	b) Use linear approximation to estimate $\sqrt{3.996}$.						
II. (8)	A boat is pulled into a dock by a rope atta the dock that is 2 m higher than the bow of a) Draw and label a figure that illustrates this si	f the boat. Th				_	ı pulley on

(b) How fast is the boat approaching the dock when it is 12 m from the dock?

- III. In this problem, $f(x) = \frac{2}{x} + \frac{1}{x^2}$, which can also be written as $\frac{2}{x^2}(x + \frac{1}{2})$. The first and second derivatives of f are $f'(x) = -\frac{2}{x^2} \frac{2}{x^3}$ and $f''(x) = \frac{4}{x^3} + \frac{6}{x^4}$ (do not check these)
 - 1. Find the root or roots of f.
 - 2. Find $\lim_{x \to \infty} f(x)$.
 - 3. Find $\lim_{x\to 0^+} f(x)$ and $\lim_{x\to 0^-} f(x)$.
 - 4. Find the critical number or critical numbers of f.
 - 5. Find the inflection point or inflection points of f.

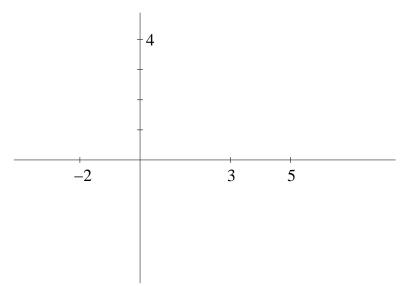
IV. State the Mean Value Theorem, including its hypotheses.(4)

- V. (a) For the function \sqrt{x} on the interval [0,9], find a number c that satisfies the conclusion of the Mean
- (8) Value Theorem.

(b) Use the Mean Value Theorem to verify the following fact: Suppose that $f: [a, b] \to \mathbb{R}$ is continuous on [a, b] and differentiable on (a, b). If f'(x) < 0 for a < x < b, then f(a) > f(b).

- \mathbf{VI} . A certain differentiable function f has domain all nonzero real numbers, and has the following properties:
- (8)
 - (a) f(-2) = 1, f(3) = 4, f(5) = 2
 - (b) f'(-2) = 0, f'(3) = 0.
 - (c) $\lim_{x\to 0} f(x) = -\infty$.
 - (d) f''(x) < 0 for -2 < x < 0 and for 0 < x < 5.
 - (e) f''(x) > 0 for x < -2 and 5 < x.
 - (f) $\lim_{x \to \infty} f(x) = 1$.

Sketch a possible graph of f, using all of the above information.



VII . (10)	Let $f:[a,b]\to\mathbb{R}$ be a function which is continuous on $[a,b]$ and differentiable on (a,b) . Label each of the following statements either T for true or F for false.			
	If a and b are roots of f, then there must exist a number c between a and b for which $f'(c) = 0$.			
	If $f'(x) > 0$ for $a < x < b$, then $f(a) < f(b)$.			
	The Mean Value Theorem is a special case of Rolle's Theorem.			
	The Mean Value Theorem can be deduced from Rolle's Theorem.			
	If $f(a) < f(b)$, then there must exist a number c between a and b for which $f'(c) > 0$.			
	If $f''(x)$ changes sign at c , then c is an inflection point of f .			
	There must exist a number c in the interval $[a,b]$ such that $f(c) \geq f(x)$ for all x in $[a,b]$.			
	If f were not continuous on $[a, b]$, then it could still have an absolute maximum or absolute minimum value on $[a, b]$, but not both.			
	If c is an interior point of the interval and $f'(c) = 0$, then f must have either a local maximum or a local minimum (or both) at c.			
	If $f(x)$ equals the mass of the portion of a metal rod between 0 and x , then $f'(x)$ is the density function of the rod.			