Math 2423 homework

- 1. (due 8/26) Following the approach we used in class to calculate the rate of change of the sine function, calculate the rate of change of the cosine function as follows:
 - 1. Use the addition formula to expand $\cos(a+h)$.
 - 2. Rewrite the expansion as $\cos(a+h) = \cos(a) + (-\sin(a))h + E(h)$, where E(h) is of the form something $\cos(a) + \text{something} \sin(a)$.
 - 3. Use the trigonometric limits we discussed in class to verify that $\lim_{h\to 0} \frac{E(h)}{h} = 0$, thus verifying that $-\sin(a)$ is the rate of change of the cosine function at a.
- 2. (due 8/26) For the function $f(x) = x^2 + 7x$, verify that 3 is not the rate of change at 0 as follows:
 - 1. Write $(0+h)^2 + 7(0+h) = 0 + 3h + E(h)$ for an explicit E(h).
 - 2. Calculate $\lim_{h\to 0} \frac{E(h)}{h}$, obtaining a nonzero value. Conclude that 3 is not the rate of change.

Then, repeat the process for the value of m that is the rate of change, in which case $\lim_{h\to 0} \frac{E(h)}{h}$ is 0.

Illustrate both cases with pictures that clarify what is going on geometrically.

- 3. (due 8/31) For $f(x) = x^3$ and [a, b] = [0, 2], find a number c that satisfies the conclusion of the MVT.
- 4. (due 8/31) Use our estimate of E(h) in terms of f'' to give an estimate of the error if one uses linear approximation at a = 0 to estimate $\cos(0.2)$. Draw a picture of the linear approximation, showing E(h), and use your estimate of |E(h)| to determine a range for the true value of $\cos(0.2)$.
- 5. (due 8/31) Use the MVT to verify that $|\sin(x) \sin(y)| \le |x y|$ for all x and y.
- 6. (due 8/31) Use the MVT to verify that $\sqrt{1+x} < 1+\frac{x}{2}$ for all x > 0 (take $f(x) = \sqrt{1+x}$ and [a, b] = [0, x]).