Math 2423 homework

1. (due $8 / 26$) Following the approach we used in class to calculate the rate of change of the sine function, calculate the rate of change of the cosine function as follows:
2. Use the addition formula to expand $\cos (a+h)$.
3. Rewrite the expansion as $\cos (a+h)=\cos (a)+(-\sin (a)) h+E(h)$, where $E(h)$ is of the form something $\cdot \cos (a)+$ something $\cdot \sin (a)$.
4. Use the trigonometric limits we discussed in class to verify that $\lim _{h \rightarrow 0} \frac{E(h)}{h}=0$, thus verifying that $-\sin (a)$ is the rate of change of the cosine function at a.
5. (due $8 / 26$) For the function $f(x)=x^{2}+7 x$, verify that 3 is not the rate of change at 0 as follows:
6. Write $(0+h)^{2}+7(0+h)=0+3 h+E(h)$ for an explicit $E(h)$.
7. Calculate $\lim _{h \rightarrow 0} \frac{E(h)}{h}$, obtaining a nonzero value. Conclude that 3 is not the rate of change.

Then, repeat the process for the value of m that is the rate of change, in which case $\lim _{h \rightarrow 0} \frac{E(h)}{h}$ is 0 .
Illustrate both cases with pictures that clarify what is going on geometrically.
3. (due $8 / 31$) For $f(x)=x^{3}$ and $[a, b]=[0,2]$, find a number c that satisfies the conclusion of the MVT.
4. (due $8 / 31$) Use our estimate of $E(h)$ in terms of $f^{\prime \prime}$ to give an estimate of the error if one uses linear approximation at $a=0$ to estimate $\cos (0.2)$. Draw a picture of the linear approxmation, showing $E(h)$, and use your estimate of $|E(h)|$ to determine a range for the true value of $\cos (0.2)$.
5. (due 8/31) Use the MVT to verify that $|\sin (x)-\sin (y)| \leq|x-y|$ for all x and y.
6. (due 8/31) Use the MVT to verify that $\sqrt{1+x}<1+\frac{x}{2}$ for all $x>0$ (take $f(x)=\sqrt{1+x}$ and $[a, b]=[0, x])$.

