Math 2423 homework

10. (due $9 / 7$) In class we class calculated the area under $y=x^{3}$ by approximating it by rectangles. Adapt this method to calculate the area of the triangle T bounded by the x-axis, the line $x=b$, and the graph of $y=m x$ where $m>0$. Specifically:
11. Partition the interval $[0, b]$ into n equal subintervals and calculate the total area U_{n} of the rectangles with heights $m(b / n), m(2 b / n) \ldots, m(n b / n)$ (the "outside" ones whose union contains T). Simplify the sum using the formula $\sum_{i=1}^{n} i=n(n+1) / 2$.
12. Calculate the total area L_{n} of the rectangles with heights $0, m(b / n) \ldots, m((n-$ $1) b / n$) (the "inside" ones whose union is contained in T), and simplify.
13. Your drawings for the previous steps should show that $L_{n}<A<U_{n}$, where A is the area of T. Calculate that $\lim _{n \rightarrow \infty} L_{n}=\lim _{n \rightarrow \infty} U_{n}=m b^{2} / 2$, to deduce that A is also $m b^{2} / 2$.
14. $(9 / 7) 5.1 \# 4,20$, 21. (Explain 20 and 21 with graphs, of course.)
15. $(9 / 7)$ Estimate the number 2 as follows.
16. Partition the interval $[0,4]$ into four equal-length subintervals.
17. Using this partition and right-hand endpoints, calculate a Riemann sum to estimate $f(4)-f(0)$ for the function $f(x)=\sqrt{x}$.
18. Explain geometrically why this Riemann sum is an underestimate.
19. $(9 / 12)$ In this problem, $f(x)=x^{2}$, the interval is $[-1,4]$, and the partition is $-1<$ $0<1<2<4$.
(a) What is the mesh of this partition?
(b) Calculate the Riemann sum that uses the midpoints of the subintervals as the x_{i}^{*}.
(c) Find the largest Riemann sum.
(d) Find the smallest Riemann sum.
20. (9/12) 5.2 \# 35-41, 43.
