Math 2423 homework

27. (10/12) Let $f(x)=\sin (x),-\pi / 2 \leq x \leq \pi / 2$.
(a) Find the domain and range of f.
(b) Check that f is injective.
(c) Writing $\sin ^{-1}(x)$ for the inverse of f, use the graph of $f(x)$ to find the graph of $y=$ $\sin ^{-1}(x)$.
(d) Label the sides of a right triangle with hypotenuse of length 1 and one angle $\sin ^{-1}(x)$. Use it to find $\cos \left(\sin ^{-1}(x)\right)$ and $\tan \left(\sin ^{-1}(x)\right)$.
(e) Calculate that the derivative of $\sin ^{-1}(x)$ is $\frac{1}{\sqrt{1-x^{2}}}$.
28. (10/12) As many as needed from $7.2^{*} \# 1-12,15-36$ (when calculating derivatives, use properties of $\ln (x)$, when possible, to simplify before calculting the derivative, for example, the function in $\# 26$ is $\left.\frac{1}{2} \ln \left(a^{2}-z^{2}\right)-\frac{1}{2} \ln \left(a^{2}+z^{2}\right)\right)$. Hand in $7.2^{*} \# 19,20$, $22,33,34,47,49$ (your formula will involve n !, n factorial), 76,83
29. (10/24 but do them before Exam II) $7.2^{*} \# 37,40,47,48,59,61,65,66,69$.
30. (10/24) As many as needed from $7.3^{*} \# 2-12,15-58,75-84$. Hand in $7.3^{*} \# 3,8,11$, $12,16-22,29,31,32,39,47,51,54,55,76,78,83,84,89,92$
31. (10/24) As many as needed from $7.4^{*} \# 1-10,17-18,21-52$. Hand in $7.4^{*} \# 6,8,10$, $17,18,28,29,33,40-42,47,50$
32. (10/24) As many as needed of $7.6 \# 1-10,22-40,59-70$. Hand in $7.6 \# 5,6,9,10,24$, 28, 38, 59, 65, 68
33. (10/31) 7.6 \# 47, 48, 50, Chapter 7 Review Problems \# 112, 113
34. (10/31) As many as needed from 7.7 \# 1-21, 23, 30-41, 53, 56-62. Hand in 7.7 \# 11, 20 (find a hyperbolic trig identity similar to $\tan ^{2}(x)+1=\sec ^{2}(x)$), 36, 39, 41, 57-62.
35. (11/7) Obtain the formula $\cosh ^{-1}(x)=\ln \left(x+\sqrt{x^{2}-1}\right)$. In solving $x=\cosh (y)$ for x, there is a subtle step where you must rule out the possibility that $e^{y}=x-\sqrt{x^{2}-1}$, which might look possible since the right-hand side is positive. To rule it out, note that you have $y \geq 0$ (since that is the range of $\cosh ^{-1}(x)$), so $e^{y} \geq 1$, but $x-\sqrt{x^{2}-1}<1$ (multiply it by $\frac{x+\sqrt{x^{2}-1}}{x+\sqrt{x^{2}-1}}$).
36. (11/7) 7.7 \# 44, 45, 63-65.
