Math 2423 homework

47. Unless you absolutely do not have time, spend a similar session (on a different day) with the problems in Section 8.6. Transform them to a general form that is in the tables, but do not bother to go on from there. For example, in \# 29 the substitution $u=x^{5}$ reduces it to something of the general form $\int \frac{1}{\sqrt{u^{2}-(\sqrt{2})^{2}}} d u$, which is number 43 in the book's tables, so stop there and move to another.
48. Read the discussion on Simpson's Rule on pp. 536-540 of the book, focusing in particular on the error estimates in Examples 6 and 7. There is no need to spend a lot of time on this topic, we just want to get the "flavor" of this important domain of mathematical thinking.
49. 8.7 \# 21(c) (Simpson's rule only), 44
50. For $0<p$, verify that $\int_{1}^{\infty} \frac{1}{x^{p}} d x$ converges if and only if $p>1$.
51. $8.8 \# 7,8,26,63,71(\mathrm{a})(\mathrm{b}), 77$ (to save time, you can use the formula $\int \frac{1}{\sqrt{a^{2}+u^{2}}} d u=$ $\ln \left(u+\sqrt{a^{2}+u^{2}}\right)+C$ from the table). Number 78 is similar to 77 , you can do it if you want to reinforce what you learned in 77 .
52. $8.8 \# 34,36,49,51$ (integral is improper at both ends, regard it as $\int_{1}^{2} \frac{x+1}{\sqrt{x^{4}-x}} d x+$ $\int_{2}^{\infty} \frac{x+1}{\sqrt{x^{4}-x}} d x$, note that $\left.\frac{x+1}{\sqrt{x^{4}-x}}>\frac{x}{\sqrt{x^{4}}}\right), 53,54$
53. $9.1 \# 13,14,41$
54. $9.2 \# 5,8,14$
