December 16, 2011

Instructions: Give concise answers, but clearly indicate your reasoning. It is *not* expected that you will be able to answer all the questions, just do whatever you can.

- I. Explain how we know that every continuous function has an antiderivative.
- (3) If f is a continuous function, then (for any choice of a in the domain of f) the Fundamental Theorem of Calculus tells us that the function F defined by $F(x) = \int_{a}^{x} f(t) dt$ has derivative equal to f.
- II. For each of the following, write the partial fraction decomposition with unknown coefficients in the numer-(6) ators, but do not go on to solve for the coefficients.
 - 1. $\frac{1}{(x^2+x)^2}$ $\frac{1}{(x^2+x)^2} = \frac{1}{(x+1)^2x^2} = \frac{A_1}{x+1} + \frac{A_2}{(x+1)^2} + \frac{B_1}{x} + \frac{B_2}{x^2}$ 2. $\frac{1}{(x-1)(x^2+1)(x^4-1)}$ $\frac{1}{(x-1)(x^2+1)(x^4-1)} = \frac{1}{(x+1)^2x^2} = \frac{1}{(x+1)^2x^2} = \frac{1}{(x+1)^2x^2}$

$$\frac{1}{(x-1)(x^2+1)(x^4-1)} = \frac{1}{(x-1)(x^2-1)(x^2+1)^2} = \frac{1}{(x-1)^2(x+1)(x^2+1)^2}$$
$$= \frac{A_1}{x-1} + \frac{A_2}{(x-1)^2} + \frac{B_1}{x+1} + \frac{C_1x+D_1}{x^2+1} + \frac{C_2x+D_2}{(x^2+1)^2}$$

III. (a) Briefly explain the idea of Simpson's Rule. Feel free to make use of a meaningful picture.

We partition [a, b] with an even number n of equally spaced points $a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b$. Taking two intervals at a time, we look at the three points (x_i, y_i) , (x_{i+1}, y_{i+1}) , (x_{i+2}, y_{i+2}) on the graph of f(x), for each even value of i. There is a unique parabola passing through those points, and the area under it between $x = x_i$ and $x = x_{i+2}$ approximates the area under y = f(x) between these same x-values. Adding up these areas for each such pair of subintervals gives the estimate in Simpson's Rule.

(b) Given the following fact:

(6)

If
$$P(x)$$
 is the parabola passing through the points (x_0, y_0) , (x_1, y_1) , (x_2, y_2) with $h = x_1 - x_0 = x_2 - x_1$,
then $\int_{x_0}^{x_2} P(x) dx = \frac{h}{3}(y_0 + 4y_1 + y_2)$.

obtain the formula in Simpson's Rule.

$$\frac{h}{3}(y_0 + 4y_1 + y_2) + \frac{h}{3}(y_2 + 4y_3 + y_4) + \frac{h}{3}(y_4 + 4y_5 + y_6) + \dots + \frac{h}{3}(y_{n-2} + 4y_{n-1} + y_n)$$

$$= \frac{h}{3}(y_0 + 4y_1 + y_2 + y_2 + 4y_3 + y_4 + y_4 + 4y_5 + y_6 + \dots + y_{n-2} + 4y_{n-1} + y_n)$$

$$= \frac{h}{3}(y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + 4y_5 + 2y_6 + \dots + 2y_{n-2} + 4y_{n-1} + y_n)$$

IV. Find each of the following.

(20)
(a)
$$\int \frac{1}{(1+x^2)^2} dx$$
 (you will need the trig identities $\cos^2(\theta) = \frac{1}{2} + \frac{1}{2}\cos(2\theta)$ and $\sin(2\theta) = 2\sin(\theta)\cos(\theta)$).

Performing the inverse substitution $x = \tan(\theta)$, $dx = \sec^2(\theta) d\theta$, we obtain

$$\int \frac{1}{(1+x^2)^2} dx = \int \frac{\sec^2(\theta)}{\sec^4(\theta)} d\theta = \int \cos^2(\theta) d\theta = \int \frac{1}{2} + \frac{1}{2} \cos(2\theta) d\theta$$
$$= \frac{\theta}{2} + \frac{1}{4} \sin(2\theta) + C = \frac{\theta}{2} + \frac{1}{2} \sin(\theta) \cos(\theta) + C .$$

Since $x = \tan(\theta)$, the angle θ appears in a right triangle with opposite leg x and adjacent leg 1, showing that $\sin(\theta) = x/\sqrt{1+x^2}$, $\cos(\theta) = 1/\sqrt{1+x^2}$. Consequently,

$$\int \frac{1}{(1+x^2)^2} dx = \frac{1}{2}\arctan(x) + \frac{1}{2}\frac{x}{\sqrt{1+x^2}}\frac{1}{\sqrt{1+x^2}} + C = \frac{1}{2}\arctan(x) + \frac{x}{2(1+x^2)} + C$$

(b) $\int \sin(\ln(x)) dx$ (start by using the inverse substitution $x = e^u$, then integrate by parts twice)

Putting $x = e^u$, $dx = e^u du$, we have $\sin(\ln(x)) dx = \int \sin(u)e^u du$. Now integrate by parts twice:

$$\int \sin(u)e^u \, du = \sin(u)e^u - \int \cos(u)e^u \, du = \sin(u)e^u - \cos(u)e^u - \int \sin(u)e^u \, du$$

Since $u = \ln(x)$, solving for $\int \sin(u)e^u du$ gives

$$\int \sin(u)e^u \, du = \sin(u)e^u / 2 - \cos(u)e^u / 2 + C = x\sin(\ln(x)) / 2 - x\cos(\ln(x)) / 2 + C \, .$$

(c) $\lim_{x \to 0^+} \sin(x) \ln(x)$

$$\lim_{x \to 0^+} \sin(x) \ln(x) = \lim_{x \to 0^+} \frac{\ln(x)}{\csc(x)} = \lim_{x \to 0^+} \frac{\frac{1}{x}}{-\csc(x)\cot(x)} = \lim_{x \to 0^+} \frac{\frac{\sin(x)}{x}}{-\cot(x)}. \text{ Since } \lim_{x \to 0^+} \frac{\sin(x)}{x} = 1 \text{ and } \lim_{x \to 0^+} -\cot(x) = -\infty, \lim_{x \to 0^+} \frac{\frac{\sin(x)}{x}}{-\cot(x)} = 0.$$
Alternatively, one can calculate
$$\lim_{x \to 0^+} \sin(x) \ln(x) = \lim_{x \to 0^+} \frac{\sin(x)}{x} \frac{\ln(x)}{1/x} = \lim_{x \to 0^+} \frac{\sin(x)}{x} \frac{1/x}{-1/x^2} = \lim_{x \to 0^+} -\sin(x) = 0.$$
(d) $f(x)$, if $\int_0^x f(t) dt = xe^{2x} + \int_0^x e^{-t} f(t) dt$

Using the Fundamental Theorem of Calculus to take derivatives, we find that $f(x) = e^{2x} + 2xe^{2x} + e^{-x}f(x)$. Solving for f(x) gives

$$f(x)(1 - e^{-x}) = e^{2x} + 2xe^{2x}$$
$$f(x) = \frac{e^{2x} + 2xe^{2x}}{1 - e^{-x}}$$

Page 3

(e)
$$\int \frac{1}{\sqrt{x^2 + x}} dx$$
, given that $\int \frac{1}{\sqrt{u^2 - a^2}} du = \ln |u + \sqrt{u^2 - a^2}| + C$.
$$\int \frac{1}{\sqrt{x^2 + x}} dx = \int \frac{1}{\sqrt{x^2 + x + \frac{1}{4} - \frac{1}{4}}} dx = \int \frac{1}{\sqrt{(x + \frac{1}{2})^2 - \frac{1}{4}}} dx$$
$$= \int \frac{1}{\sqrt{u^2 - \frac{1}{4}}} du = \ln \left| u + \sqrt{u^2 - \frac{1}{4}} \right| + C = \ln \left| x + \frac{1}{2} + \sqrt{x^2 + x} \right| + C$$

This integral can also be evaluated using a clever substitution that one student almost found: Put $x = \sinh^2(u), dx = 2\sinh(u)\cosh(u) du$. We then have:

$$\int \frac{1}{\sqrt{x^2 + x}} \, dx = \int \frac{2\sinh(u)\cosh(u)}{\sqrt{\sinh^4(u) + \sinh^2(u)}} \, du = \int \frac{2\sinh(u)\cosh(u)}{\sinh(u)\sqrt{\sinh^2(u) + 1}} \, du$$
$$= \int \frac{2\cosh(u)}{\sqrt{\cosh^2(u)}} \, du = \int \frac{2\cosh(u)}{\cosh(u)} \, du = \int 2 \, du = 2u + C = 2\sinh^{-1}(\sqrt{x}) + C = 2\ln|\sqrt{x} + \sqrt{x + 1}| + C$$

To reconcile this with the other answer, we have

$$2\ln|\sqrt{x} + \sqrt{x+1}| + C = \ln((\sqrt{x} + \sqrt{x+1})^2) + C = \ln(x + 2(\sqrt{x}\sqrt{x+1}) + x + 1) + C$$
$$= \ln(2x + 2(\sqrt{x^2 + x}) + 1) + C = \ln(2(x + \sqrt{x^2 + x} + \frac{1}{2})) + C$$
$$= \ln(x + \sqrt{x^2 + x} + \frac{1}{2}) + \ln(2) + C = \ln(x + \sqrt{x^2 + x} + \frac{1}{2}) + C$$

V. This problem concerns the curve which is the portion of the graph $y = 3 + \frac{1}{2}\cosh(2x)$ between x = 0 and (9) x = 1.

(a) Find ds for this curve.

$$ds = \sqrt{1 + (y')^2} \, dx = \sqrt{1 + \sinh^2(2x)} \, dx = \sqrt{\cosh^2(2x)} \, dx = \cosh(2x) \, dx$$

(b) Calculate the length of the curve.

$$\int_0^1 \cosh(2x) \, dx = \frac{1}{2} \sinh(2x) \Big|_0^1 = \frac{1}{2} \sinh(2) = \frac{e^2 - e^{-2}}{4} \, .$$

(c) Write an integral whose value equals the surface area produced when the curve is rotated about the x-axis, but do not evaluate the integral.

$$\int_0^1 2\pi (3 + \frac{1}{2}\cosh(2x))\cosh(2x) \, dx$$

VI. Carry out integration by parts to reduce the evaluation of $\int \frac{x \arctan(x)}{(1+x^2)^2} dx$ to a problem of integrating a rational function, but do not continue on to integrate that rational function.

Taking
$$u = \arctan(x)$$
, $du = \frac{1}{1+x^2} dx$, $v = -\frac{1}{2(1+x^2)}$, and $dv = \frac{x}{(1+x^2)^2}$, we have
$$\int \frac{x \arctan(x)}{(1+x^2)^2} dx = -\frac{\arctan(x)}{1+x^2} + \int \frac{1}{2(1+x^2)^2} dx$$

VII. If f(t) is continuous for $t \ge 0$, the Laplace transform of f is the function F(s) defined by $F(s) = \begin{pmatrix} 6 \end{pmatrix} \int_{0}^{\infty} f(t) e^{-st} dt$. Find F(s) if $f(t) = e^{kt}$. Be sure to tell the domain of this F(s).

$$F(s) = \int_0^\infty e^{kt} e^{-st} dt = \int_0^\infty e^{(k-s)t} dt = \lim_{b \to \infty} \int_0^b e^{(k-s)t} dt$$
$$= \lim_{b \to \infty} \frac{1}{k-s} e^{(k-s)t} \Big|_0^b = \lim_{b \to \infty} \frac{1}{k-s} e^{(k-s)b} - \frac{1}{k-s}$$

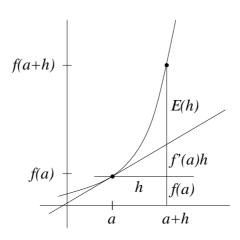
This is undefined when $k - s \ge 0$. For k < s, it equals $0 - \frac{1}{k-s} = \frac{1}{s-k}$. That is, $F(s) = \frac{1}{s-k}$ with domain the open interval (k, ∞) .

f(a+h) = f(a) + f'(a)h + E(h),

VIII. Recall that we defined f'(a) by (9)

where $\lim_{h \to 0} E(h)/h = 0$.

(a) Draw a picture showing the graph of a typical f, a, a + h, f(a), f(a + h), f'(a)h, and E(h).



(b) Use the definition to find f' if $f(x) = x^2$.

$$(a+h)^2 = a^2 + 2a \cdot h + h^2$$
. Since $\lim_{h \to 0} \frac{h^2}{h} = \lim_{h \to 0} h = 0, f'(a) = 2a$.

(c) Use integration by parts to show that $E(h) = \int_{a}^{a+h} (a+h-t)f''(t) dt$.

Integrating by parts with u = a + h - t, du = -dt, v = f'(t), and dv = f''(t) dt, we have

$$\int_{a}^{a+h} (a+h-t)f''(t) \, dt = (a+h-t)f'(t) \Big|_{a}^{a+h} + \int_{a}^{a+h} f'(t) \, dt = -f'(a)h + f(a+h) - f(a) = E(h)$$

IX. Let $a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b$ be a partition of the closed interval [a, b].

(6)

(a) Define a Riemann sum for f on the interval [a, b], associated to this partition.

It is a sum of the form $\sum_{i=1}^{n} f(x_i^*) \Delta x_i$, where $\Delta x_i = x_i - x_{i-1}$ and each x_i^* lies in the subinterval $[x_{i-1}, x_i]$.

(b) Define $\int_a^b f(x) dx$

It is the limit of all Riemann sums of f associated to all partitions of [a, b], where the limit is taken as the mesh of the partition (the largest of its Δx_i -values) limits to 0.

(c) For the function $f(x) = x^2$ and the interval [-1, 2], find the smallest Riemann sum associated to the partition -1 < -1/2 < 1 < 2.

Take the x_i^* to be where the smallest values of x^2 occur in each of the intervals [-1, -1/2], [-1/2, 1], [1, 2], that is, -1/2, 0, and 1 respectively, giving the sum $(-1/2)^2 \cdot 1/2 + 0^2 \cdot (3/2) + 1^2 \cdot 1 = 5/4$.

X. (a) State the Mean Value Theorem.

(6)

If f(x) is continuous on [a, b] and differentiable on (a, b), then there exists c between a and b such that f(b) - f(a) = f'(c)(b - a).

(b) Let $F(x) = \int_0^x f(t) dt$. Tell why $\int_a^b f(t) dt = F(b) - F(a)$. Then use the Mean Value Theorem to tell why $\int_a^b f(t) dt = f(c)(b-a)$ for some c in the interval (a, b) (this is the "Mean Value Theorem for Integrals").

We have $F(b) - F(a) = \int_0^b f(t) dt - \int_0^a f(t) dt = \int_0^b f(t) dt + \int_a^0 f(t) dt = \int_a^b f(t) dt$. By the Fundamental Theorem of Calculus, F'(x) = f(x), so using the Mean Value Theorem we have

$$\int_{a}^{b} f(t) dt = F(b) - F(a) = f(c)(b - a)$$

for some c between a and b.