September 19, 2011
Instructions: Give concise answers, but clearly indicate your reasoning. It is not expected that you will be able to answer all the questions, just do whatever you can in 50 minutes.
I. For the function $f(x)=x^{2}$ on the interval $[-1,6]$ and the partition $-1<2<4<6$ of $[-1,6]$:
(6)
(a) Calculate the Riemann sum that uses the midpoints of the subintervals as the x_{i}^{*}.
(b) Calculate the smallest Riemann sum.
II. (a) State the definition we used for the rate of change of a function f at a point a (in the definition, use
(9) $\quad m$ for the rate of change).
(b) Use our definition to verify that the rate of change of $x^{3}+8 x$ at 0 is 8 . That is, taking this function as $f(x)$, $a=0$, and 8 as the rate of change, write $f(0+h)=h^{3}+8 h$ as an expression involving the rate of change and the error $E(h)$, then analyze $E(h)$ to verify that 8 is the correct rate of change.
(c) Use our definition to verify that the rate of change of $x^{3}+8 x$ at 0 is not -2 .
III. Without worrying about the hypotheses, state both parts of the Fundamental Theorem of Caclulus.
(6)
IV. Use the Mean Value Theorem to verify that if x and y are any two numbers greater than 1 , then
(5) $\quad|\sqrt{x}-\sqrt{y}| \leq|x-y| / 2$.
V. For the function $f(x)=x^{2}$, write the Riemann sum of the form $\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$ for the partition of the interval
(8) $[0,2]$ into n equal intervals, where $x_{i}=2 i / n$. Use the formula $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$ to rewrite this Riemann sum as an expression with only one term, then take its limit to find the area under f on $[0,2]$.
VI. Write an expression, involving an integral, for a function $f(x)$ such that $f(2)=0$ and f is an antiderivative (3) of $B_{2}(x)\left(B_{2}(x)\right.$ is a certain continuous function defined on the entire real line, called the Bessel function of the second kind.)
VII. Calculate the following.
(16)
(a) $\int_{0}^{1}(\sqrt{x}+1)^{2} d x$
(b) $\int_{0}^{3 \pi / 2} \sin (y) d y$
(c) $\lim _{\operatorname{mesh}\left(\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right\}\right) \rightarrow 0} \sum_{i=1}^{n} \sin \left(x_{i}^{*}\right) \Delta x_{i}$, where mesh $\left(\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right\}\right)$ is the mesh of the partition $0=x_{0}<$ $x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}=3 \pi / 2, \Delta x_{i}=x_{i}-x_{i-1}$, and the limit is taken over all partitions and all choices of the sample points $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$.
(d) The number $g(1)$, where $\frac{d g}{d x}=\frac{d}{d x}\left(\frac{\left(x^{2}+1\right)(x-1)}{\left(x^{4}+1\right)^{3}}\right)$ and $g(0)=4$.

