October 17, 2011
Instructions: Give concise answers, but clearly indicate your reasoning. It is not expected that you will be able to answer all the questions, just do whatever you can in 50 minutes.
I. Evaluate the following integrals.
(12)

1. $\int \frac{\cos (\pi / x)}{x^{2}} d x$

Letting $u=\pi / x, d u=-\pi / x^{2} d x$, we have
$\int \frac{\cos (\pi / x)}{x^{2}} d x=\frac{-1}{\pi} \int \cos (u) d u=-\sin (u) / \pi+C=-\sin (\pi / x) / \pi+C$
2. $\int \frac{x+1}{x^{2}+1} d x$
$\int \frac{x+1}{x^{2}+1} d x=\int \frac{x}{x^{2}+1} d x+\int \frac{1}{x^{2}+1} d x=\frac{1}{2} \int \frac{2 x}{x^{2}+1} d x+\int \frac{1}{x^{2}+1} d x=\frac{1}{2} \ln \left(x^{2}+1\right)+\tan ^{-1}(x)+C$
3. $\int \frac{x^{2}}{\sqrt{1-x}} d x$

Letting $u=1-x, d u=-d x$, we have
$\int \frac{x^{2}}{\sqrt{1-x}} d x=-\int \frac{(1-u)^{2}}{\sqrt{u}} d x=-\int u^{3 / 2}-2 u^{1 / 2}+u^{-1 / 2} d x=-2 u^{5 / 2} / 5+4 u^{3 / 2} / 3-2 \sqrt{u}+C=$ $-2(1-x)^{5 / 2} / 5+4(1-x)^{3 / 2} / 3-2 \sqrt{1-x}+C$
The substitution $u=\sqrt{1-x}$ will also work. One then has $x=1-u^{2}$ and $d u=-\frac{1}{2 \sqrt{1-x}} d x$, so
$\int \frac{x^{2}}{\sqrt{1-x}} d x=-2 \int\left(1-u^{2}\right)^{2} d u=-2 \int 1-2 u^{2}+u^{4} d u=-2 u+4 u^{3} / 3-2 u^{5} / 5+C=-2 \sqrt{1-x}+$ $4(1-x)^{3 / 2} / 3-2(1-x)^{5 / 2} / 5+C$
II. If $f(x)$ is the slope of a trail at a distance x miles from the start of the trail, what does the integral
(3) $\int_{3}^{5} f(x) d x$ represent?

It represents the difference in altitude between the location at distance 3 and the location at distance 5 .
III. By substituting $u=\frac{t}{a}$, verify that $\int_{a}^{a b} \frac{1}{t} d t=\ln (b)$.

Putting $u=t / a, t=a u, d t=a d u$, we have $\int_{a}^{a b} \frac{1}{t} d t=\int_{1}^{b} \frac{1}{a u} a d u=\int_{1}^{b} \frac{1}{u} d u=\ln (b)$.
IV. Write definite integrals to compute each of the following, but do not simplify or evaluate them.
(8)
(a) The volume of the solid produced when the region bounded by $y=(x-2)^{2}$ and $y=8 x-16$ is rotated about the line $y=-1$.

Solving $8 x-16=(x-2)^{2}$ we find that the curves intersect at $x=2$ and $x=10$, and consideration of the graphs shows that $8 x-16>(x-2)^{2}$ in that range. Taking slices perpendicular to $y=-1$, the cross-section is the region between circles of radii $(x-2)^{2}+1$ and $8 x-15$, so the volume is $\int_{2}^{10} \pi\left((8 x-15)^{2}-\left((x-2)^{2}+1\right)^{2}\right) d x$.
Alternatively but more complicated, one may solve the equations for x in terms of y and view the region as lying between $x=2+y / 8$ and $x=\sqrt{y}+2$ for $0 \leq y \leq 64$. Using cylindrical cross-sections, the distance to the axis is $y+1$ and the volume is $\int_{0}^{64} 2 \pi(y+1)(\sqrt{y}+2-(2+y / 8)) d y$.
(b) The volume of the solid produced when the region in part (a) is rotated about the line $x=-1$.

The distance from x to the axis of rotation is $x+1$, so taking cylindrical slices we can express the volume as $\int_{2}^{10} 2 \pi(x+1)\left(8 x-16-(x-2)^{2}\right) d x$.
Alternatively, but more complicated, one may use horizontal slices, so the cross-sections lie between circles of radius $\sqrt{y}+3$ and $3+y / 8$, giving volume $\int_{0}^{64} \pi\left((\sqrt{y}+3)^{2}-(3+y / 8)^{2}\right) d y$.
V. (a) Calculate and simplify: $\frac{d}{d x} \ln \left(x+\sqrt{x^{2}-1}\right)$
(11)

$$
\begin{equation*}
\frac{d}{d x} \ln \left(x+\sqrt{x^{2}-1}\right)=\frac{1}{x+\sqrt{x^{2}-1}}\left(1+\frac{x}{\sqrt{x^{2}-1}}\right)=\frac{1}{x+\sqrt{x^{2}-1}} \frac{\sqrt{x^{2}-1}+x}{\sqrt{x^{2}-1}}=\frac{1}{\sqrt{x^{2}-1}} \tag{11}
\end{equation*}
$$

(b) Simplify and calculate: $\frac{d}{d z} \ln \left(\sqrt{\frac{a^{2}-z^{2}}{a^{2}+z^{2}}}\right)$

$$
\frac{d}{d z} \ln \left(\sqrt{\frac{a^{2}-z^{2}}{a^{2}+z^{2}}}\right)=\frac{d}{d z}\left(\frac{1}{2} \ln \left(a^{2}-z^{2}\right)-\frac{1}{2} \ln \left(a^{2}+z^{2}\right)\right)=-\frac{z}{a^{2}-z^{2}}-\frac{z}{a^{2}+z^{2}}
$$

(c) Calculate the average value of $\frac{1}{1+x^{2}}$ between $x=0$ and $x=\sqrt{3}$.

$$
\frac{1}{\sqrt{3}-0} \int_{0}^{\sqrt{3}} \frac{1}{1+x^{2}} d x=\left.\frac{1}{\sqrt{3}} \tan ^{-1}(x)\right|_{0} ^{\sqrt{3}}=\frac{1}{\sqrt{3}}\left(\tan ^{-1}(\sqrt{3})-\tan ^{-1}(0)\right)=\frac{1}{\sqrt{3}}\left(\frac{\pi}{3}-0\right)=\frac{\pi}{3 \sqrt{3}}
$$

VI. Potpourri:
(13)

1. Define what it means to say that a function f is injective.

It means that if $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $x_{1}=x_{2}$.
2. For an injective function f with domain A and range B, define the inverse function g.

The domain of g is B, its range is A, and $g(x)=y$ exactly when $f(y)=x$.
3. State the Intermediate Value Theorem.

If f is a continuous function on a closed interval $[a, b]$, and N is any number between $f(a)$ and $f(b)$, then there exists a c between a and b such that $f(c)=N$.
(Many people stated the Mean Value Theorem for Integrals.)
4. Show that for any integer $n \geq 2, \ln (n)<1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n-1}$.

Partition the interval $[1, n]$ into $n-1$ equal subintervals, and draw the picture of the Riemann sum that estimates the area under $y=1 / t$ on this interval using the left endpoints of the intervals as the x_{i}^{*}. The rectangles completely enclose the area, since $1 / t$ is a decreasing function. The area under $1 / t$ is $\ln (n)$ and the Riemann sum is the sum of the areas of the rectangles, which is $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n-1}$, giving the inequality.
5. Draw a right triangle with hypotenuse of length 1 and a side of length x. Indicate the length of the third side and correctly label the interior angles as $\sin ^{-1}(x)$ and $\cos ^{-1}(x)$. Use the triangle to find $\cot \left(\sin ^{-1}(x)\right)$. The third side has length $\sqrt{1-x^{2}}$. The angle opposite the side labeled x is $\sin ^{-1}(x)$ and the angle adjacent to that side is $\cos ^{-1}(x)$. From the triangle we read off that $\cot \left(\sin ^{-1}(x)\right)=\frac{\sqrt{1-x^{2}}}{x}$.

