Exam II

(

October 17, 2011

Instructions: Give concise answers, but clearly indicate your reasoning. It is *not* expected that you will be able to answer all the questions, just do whatever you can in 50 minutes.

I. Evaluate the following integrals.

12)
1.
$$\int \frac{\cos(\pi/x)}{x^2} dx$$
Letting $u = \pi/x$, $du = -\pi/x^2 dx$, we have

$$\int \frac{\cos(\pi/x)}{x^2} dx = \frac{-1}{\pi} \int \cos(u) du = -\sin(u)/\pi + C = -\sin(\pi/x)/\pi + C$$
2.
$$\int \frac{x+1}{x^2+1} dx$$

$$\int \frac{x+1}{x^2+1} dx = \int \frac{x}{x^2+1} dx + \int \frac{1}{x^2+1} dx = \frac{1}{2} \int \frac{2x}{x^2+1} dx + \int \frac{1}{x^2+1} dx = \frac{1}{2} \ln(x^2+1) + \tan^{-1}(x) + C$$
3.
$$\int \frac{x^2}{\sqrt{1-x}} dx$$
Letting $u = 1 - x$, $du = -dx$, we have

$$\int \frac{x^2}{\sqrt{1-x}} dx = -\int \frac{(1-u)^2}{\sqrt{u}} dx = -\int \frac{u^{3/2}}{\sqrt{1-x}} dx = -2u^{5/2}/5 + 4u^{3/2}/3 - 2\sqrt{u} + C = -2(1-x)^{5/2}/5 + 4(1-x)^{3/2}/3 - 2\sqrt{1-x} + C$$

The substitution $u = \sqrt{1-x}$ will also work. One then has $x = 1 - u^2$ and $du = -\frac{1}{2\sqrt{1-x}} dx$, so $\int \frac{x^2}{\sqrt{1-x}} dx = -2 \int (1-u^2)^2 du = -2 \int 1 - 2u^2 + u^4 du = -2u + 4u^3/3 - 2u^5/5 + C = -2\sqrt{1-x} + 4(1-x)^{3/2}/3 - 2(1-x)^{5/2}/5 + C$

II. If f(x) is the slope of a trail at a distance x miles from the start of the trail, what does the integral (3) $\int_{3}^{5} f(x) dx$ represent?

It represents the difference in altitude between the location at distance 3 and the location at distance 5.

III. By substituting
$$u = \frac{t}{a}$$
, verify that $\int_{a}^{ab} \frac{1}{t} dt = \ln(b)$.
(4)
Putting $u = t/a, t = au, dt = a du$, we have $\int_{a}^{ab} \frac{1}{t} dt = \int_{1}^{b} \frac{1}{au} a du = \int_{1}^{b} \frac{1}{u} du = \ln(b)$.

- IV. Write definite integrals to compute each of the following, but *do not* simplify or evaluate them.
- (8)
 - (a) The volume of the solid produced when the region bounded by $y = (x-2)^2$ and y = 8x 16 is rotated about the line y = -1.

Solving $8x - 16 = (x - 2)^2$ we find that the curves intersect at x = 2 and x = 10, and consideration of the graphs shows that $8x - 16 > (x - 2)^2$ in that range. Taking slices perpendicular to y = -1, the cross-section is the region between circles of radii $(x - 2)^2 + 1$ and 8x - 15, so the volume is $\int_{0}^{10} \pi((8x - 15)^2 - ((x - 2)^2 + 1)^2) dx$.

Alternatively but more complicated, one may solve the equations for x in terms of y and view the region as lying between x = 2 + y/8 and $x = \sqrt{y} + 2$ for $0 \le y \le 64$. Using cylindrical cross-sections, the distance to the axis is y + 1 and the volume is $\int_{0}^{64} 2\pi(y+1)(\sqrt{y}+2-(2+y/8)) dy$.

(b) The volume of the solid produced when the region in part (a) is rotated about the line x = -1.

The distance from x to the axis of rotation is x + 1, so taking cylindrical slices we can express the volume as $\int_{2}^{10} 2\pi (x+1)(8x-16-(x-2)^2) dx$.

Alternatively, but more complicated, one may use horizontal slices, so the cross-sections lie between circles of radius $\sqrt{y} + 3$ and 3 + y/8, giving volume $\int_{0}^{64} \pi((\sqrt{y} + 3)^2 - (3 + y/8)^2) dy$.

V. (a) Calculate and simplify:
$$\frac{d}{dx} \ln(x + \sqrt{x^2 - 1})$$

(11)
 $\frac{d}{dx} \ln(x + \sqrt{x^2 - 1}) = \frac{1}{x + \sqrt{x^2 - 1}} \left(1 + \frac{x}{\sqrt{x^2 - 1}}\right) = \frac{1}{x + \sqrt{x^2 - 1}} \frac{\sqrt{x^2 - 1} + x}{\sqrt{x^2 - 1}} = \frac{1}{\sqrt{x^2 - 1}}$
(b) Simplify and calculate: $\frac{d}{dz} \ln\left(\sqrt{\frac{a^2 - z^2}{a^2 + z^2}}\right)$
 $\frac{d}{dz} \ln\left(\sqrt{\frac{a^2 - z^2}{a^2 + z^2}}\right) = \frac{d}{dz} \left(\frac{1}{2} \ln(a^2 - z^2) - \frac{1}{2} \ln(a^2 + z^2)\right) = -\frac{z}{a^2 - z^2} - \frac{z}{a^2 + z^2}$

(c) Calculate the average value of $\frac{1}{1+x^2}$ between x = 0 and $x = \sqrt{3}$.

$$\frac{1}{\sqrt{3}-0} \int_0^{\sqrt{3}} \frac{1}{1+x^2} \, dx = \frac{1}{\sqrt{3}} \tan^{-1}(x) \Big|_0^{\sqrt{3}} = \frac{1}{\sqrt{3}} (\tan^{-1}(\sqrt{3}) - \tan^{-1}(0)) = \frac{1}{\sqrt{3}} \left(\frac{\pi}{3} - 0\right) = \frac{\pi}{3\sqrt{3}} \left(\frac{\pi}{3} - 0\right) = \frac{\pi}{3\sqrt$$

VI. Potpourri:

(13)

1. Define what it means to say that a function f is *injective*.

It means that if $f(x_1) = f(x_2)$, then $x_1 = x_2$.

2. For an injective function f with domain A and range B, define the *inverse function* g.

The domain of g is B, its range is A, and g(x) = y exactly when f(y) = x.

3. State the Intermediate Value Theorem.

If f is a continuous function on a closed interval [a, b], and N is any number between f(a) and f(b), then there exists a c between a and b such that f(c) = N.

(Many people stated the Mean Value Theorem for Integrals.)

4. Show that for any integer $n \ge 2$, $\ln(n) < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1}$.

Partition the interval [1, n] into n - 1 equal subintervals, and draw the picture of the Riemann sum that estimates the area under y = 1/t on this interval using the left endpoints of the intervals as the x_i^* . The rectangles completely enclose the area, since 1/t is a decreasing function. The area under 1/t is $\ln(n)$ and the Riemann sum is the sum of the areas of the rectangles, which is $1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n-1}$, giving the inequality.

5. Draw a right triangle with hypotenuse of length 1 and a side of length x. Indicate the length of the third side and correctly label the interior angles as $\sin^{-1}(x)$ and $\cos^{-1}(x)$. Use the triangle to find $\cot(\sin^{-1}(x))$.

The third side has length $\sqrt{1-x^2}$. The angle opposite the side labeled x is $\sin^{-1}(x)$ and the angle adjacent to that side is $\cos^{-1}(x)$. From the triangle we read off that $\cot(\sin^{-1}(x)) = \frac{\sqrt{1-x^2}}{x}$.