Exam III

November 16, 2011
Instructions: Give concise answers, but clearly indicate your reasoning. It is not expected that you will be able to answer all the questions, just do whatever you can in 50 minutes.
I. Find the point on the graph of $y=\cosh (x)$ where the tangent line has slope 2. Express the answer as an (4) expression involving the logarithm funtion, not an inverse hyperbolic trig function.
II. Evaluate the following integrals.
(16)

1. $\int \tan ^{3}(x) d x$
2. $\int \frac{\log _{10}(x)}{x} d x$
3. $\int x^{3} e^{-x^{2}} d x$. You may make use of the fact that $\int x e^{-x^{2}} d x=-e^{-x^{2}} / 2+C$.
4. $\int \frac{1}{\sqrt{x}(1+x)} d x$
III. The triangle $A B C$ is an isosceles right triangle whose legs $A B$ and
(4) $\quad A C$ each have length 2 . Let $0<x \leq 2 \sqrt{2}$ be the distance from C to the point P on the hypotenuse of $A B C$. Express the angle θ as a function of x. (Hint: draw the horizontal line from P to $A C$.)
IV. Evaluate the following limits.

(12). $\lim _{x \rightarrow \infty} x \tan (1 / x)$
5. $\lim _{x \rightarrow 0}(1-2 x)^{1 / x}$
6. $\lim _{x \rightarrow 0} \frac{1}{x^{3}} \int_{0}^{x} \sin \left(\frac{1}{2} \pi t^{2}\right) d t$
V. Define what it means to say that a function f is injective (also called one-to-one). Assuming that f is an (4) injective function with domain A and range B, define what it means to say that a function g is the inverse of f.
VI. Obtain the reduction formula $\int(\ln (x))^{n} d x=x(\ln (x))^{n}-n \int(\ln (x))^{n-1} d x$.
(4)
(4)
VII. Find the exact values of $\arctan (\tan (1))$ and $\arctan (\tan (6))$,
(3)
VIII. Calculate the following derivatives.
(6)
7. $\frac{d}{d x} \log _{10}(\ln (x))$
8. $\frac{d}{d x} 10^{\ln (x)}$
