Exam III

November 16, 2011
Instructions: Give concise answers, but clearly indicate your reasoning. It is not expected that you will be able to answer all the questions, just do whatever you can in 50 minutes.
I. Find the point on the graph of $y=\cosh (x)$ where the tangent line has slope 2 . Express the answer as an (4) expression involving the logarithm funtion, not an inverse hyperbolic trig function.

We want the point where $\cosh ^{\prime}(x)=\sinh (x)=2$, or $\left(e^{x}-x^{-2}\right) / 2=2$. Solving for x, we have $e^{x}-e^{-x}=4,\left(e^{x}\right)^{2}-4 e^{x}-1=0$, and $e^{x}=2 \pm \sqrt{5}$. Since $e^{x}>0$, the only possibility is $e^{x}=2+\sqrt{5}$, so $x=\ln (2+\sqrt{5})$.
II. Evaluate the following integrals.
(16)

1. $\int \tan ^{3}(x) d x$

$$
\int \tan ^{3}(x) d x=\int \tan (x)\left(\sec ^{2}(x)-1\right) d x=\int \tan (x) \sec ^{2}(x)-\tan (x) d x=\frac{\tan ^{2}(x)}{2}+\ln |\cos (x)|+C
$$

2. $\int \frac{\log _{10}(x)}{x} d x$

$$
\int \frac{\log _{10}(x)}{x} d x=\int \frac{\ln (x)}{\ln (10) x} d x=\int \frac{1}{\ln (10)} \ln (x) d(\ln (x))=\frac{\ln (x)^{2}}{2 \ln (10)}+C
$$

3. $\int x^{3} e^{-x^{2}} d x$. You may make use of the fact that $\int x e^{-x^{2}} d x=-e^{-x^{2}} / 2+C$.

Using integration by parts with $u=x^{2}, d u=2 x d x, d v=x e^{-x^{2}} d x, v=-e^{-x^{2}} / 2$, we have $\int x^{3} e^{-x^{2}} d x=$ $-x^{2} e^{-x^{2}} / 2+\int x e^{-x^{2}} d x=-x^{2} e^{-x^{2}} / 2-e^{-x^{2}} / 2+C=-e^{-x^{2}}\left(1+x^{2}\right) / 2+C$.
4. $\int \frac{1}{\sqrt{x}(1+x)} d x$

$$
\text { Putting } u=\sqrt{x}, d u=\frac{1}{2 \sqrt{x}} d x \text {, we have } \int \frac{1}{\sqrt{x}(1+x)} d x=\int \frac{2}{1+u^{2}} d u=2 \tan ^{-1}(\sqrt{x})+C
$$

III. The triangle $A B C$ is an isosceles right triangle whose legs $A B$ and
(4) $\quad A C$ each have length 2 . Let $0<x \leq 2 \sqrt{2}$ be the distance from C to the point P on the hypotenuse of $A B C$. Express the angle θ as a function of x. (Hint: draw the horizontal line from P to $A C$.)

Let P^{\prime} be the point where the horizontal line from P to $A C$ meets $A C$, and let ω be the angle $P^{\prime} P A$, so that $\theta=\pi / 4+\omega$. Since $C P$ has length $x, P P^{\prime}$ and $P^{\prime} C$ each have length $x / \sqrt{2}$, and consequently $P^{\prime} A$ has length $2-x / \sqrt{2}$. Since the length of $P^{\prime} A$ divided by the length of $P^{\prime} P$ is $\tan (\omega)$, and $\pi / 4 \leq \omega<\pi / 2$, we have $\omega=\tan ^{-1}\left(\frac{2-x / \sqrt{2}}{x / \sqrt{2}}\right)=\tan ^{-1}\left(\frac{2 \sqrt{2}-x}{x}\right)$, and therefore $\theta=\pi / 4+\tan ^{-1}\left(\frac{2 \sqrt{2}-x}{x}\right)$.

Page 2

IV. Evaluate the following limits.
(12)

1. $\lim _{x \rightarrow \infty} x \tan (1 / x)$

Using l'Hôpital's rule, $\lim _{x \rightarrow \infty} x \tan (1 / x)=\lim _{x \rightarrow \infty} \frac{\tan (1 / x)}{1 / x}=\lim _{x \rightarrow \infty} \frac{-\sec ^{2}(1 / x) / x^{2}}{-1 / x^{2}}=\lim _{x \rightarrow \infty} \sec ^{2}(1 / x)=$ $\sec ^{2}(0)=1$.
2. $\lim _{x \rightarrow 0}(1-2 x)^{1 / x}$

We have $\lim _{x \rightarrow 0}(1-2 x)^{1 / x}=\lim _{x \rightarrow 0} e^{\ln \left((1-2 x)^{1 / x}\right)}=\lim _{x \rightarrow 0} e^{\ln (1-2 x) / x}$. Using l'Hôpital's rule, $\lim _{x \rightarrow 0} \frac{\ln (1-2 x)}{x}=$ $\lim _{x \rightarrow 0} \frac{-2 /(1-2 x)}{1}=-2$, so $\lim _{x \rightarrow 0}(1-2 x)^{1 / x}=e^{-2}$.
3. $\lim _{x \rightarrow 0} \frac{1}{x^{3}} \int_{0}^{x} \sin \left(\frac{1}{2} \pi t^{2}\right) d t$

Using l'Hôpital's rule and the FTC,

$$
\begin{aligned}
& \qquad \lim _{x \rightarrow 0} \frac{1}{x^{3}} \int_{0}^{x} \sin \left(\frac{1}{2} \pi t^{2}\right) d t=\lim _{x \rightarrow 0} \frac{\int_{0}^{x} \sin \left(\frac{1}{2} \pi t^{2}\right) d t}{x^{3}}=\lim _{x \rightarrow 0} \frac{\sin \left(\frac{1}{2} \pi x^{2}\right)}{3 x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{\pi x \cos \left(\frac{1}{2} \pi x^{2}\right)}{6 x}=\lim _{x \rightarrow 0} \frac{\pi \cos \left(\frac{1}{2} \pi x^{2}\right)}{6}=\frac{\pi}{6} \\
& \text { (Or alternatively } \lim _{x \rightarrow 0} \frac{\sin \left(\frac{1}{2} \pi x^{2}\right)}{3 x^{2}}=\lim _{x \rightarrow 0} \frac{\pi}{6} \frac{\sin \left(\frac{1}{2} \pi x^{2}\right)}{\frac{1}{2} \pi x^{2}}=\frac{\pi}{6} . \text {) }
\end{aligned}
$$

V. Define what it means to say that a function f is injective (also called one-to-one). Assuming that f is an (4) injective function with domain A and range B, define what it means to say that a function g is the inverse of f.
f is injective when $f\left(x_{1}\right)=f\left(x_{2}\right)$ implies that $x_{1}=x_{2}$.
g is the inverse of f if the domain of g is B, the range of g is A, and $g(x)=y$ exactly when $f(y)=x$.
VI. Obtain the reduction formula $\int(\ln (x))^{n} d x=x(\ln (x))^{n}-n \int(\ln (x))^{n-1} d x$.
(4)

Using integration by parts with $u=\ln (x)^{n}, d u=n \ln (x)^{n-1} / x d x, d v=d x$, and $v=x$, we have

$$
\int(\ln (x))^{n} d x=x(\ln (x))^{n}-\int x \cdot n \ln (x)^{n-1} / x d x=x(\ln (x))^{n}-n \int(\ln (x))^{n-1} d x .
$$

VII. Find the exact values of $\arctan (\tan (1))$ and $\arctan (\tan (6))$,

1 radian is between $-\pi / 2$ and $\pi / 2$, so $\arctan (\tan (1))=1$.
6 is just a little less than 2π, so an angle of 6 radians lies in quadrant IV (where $x>0$ and $y<0$). To obtain an angle with the same tangent but lying between $-\pi / 2$ and $\pi / 2$, we must subtract 2π. So $\arctan (\tan (6))=\arctan (\tan (6-2 \pi))=6-2 \pi / 2$.

Page 3
VIII. Calculate the following derivatives.
(6)

1. $\frac{d}{d x} \log _{10}(\ln (x))$

$$
\frac{d}{d x} \log _{10}(\ln (x))=\frac{d}{d x} \frac{\ln (\ln (x))}{\ln (10)}=\frac{\frac{1}{\ln (x)} \cdot \frac{1}{x}}{\ln (10)}=\frac{1}{x \ln (x) \ln (10)}
$$

2. $\frac{d}{d x} 10^{\ln (x)}$

$$
\frac{d}{d x} 10^{\ln (x)}=\frac{d}{d x} e^{\ln (x) \ln (10)}=\left(e^{\ln (x) \ln (10)}\right) \cdot \frac{\ln (10)}{x}=\frac{10^{\ln (x)} \ln (10)}{x}
$$

