Math 2934 homework

26. (11/4) Suppose you have a function $g(u, v)$ of two variables. Its domain is a region R in the $u v$-plane. Consider its graph in $u v w$-space, $w=g(u, v)$.
(a) For a small rectangle of sides Δu_{i} and Δv_{j} in the $u v$-plane, whose lower left corner has coordinates $\left(u_{i}, v_{j}\right)$, use the method we discussed in class to verify that in the tangent plane to $w=g(u, v)$ at the point $\left(u_{i}, v_{j}, g\left(u_{i}, v_{j}\right)\right)$, the area lying above the rectangle has area $\sqrt{1+g_{u}\left(u_{i}, v_{j}\right)^{2}+g_{v}\left(u_{i}, v_{j}\right)^{2}} \Delta u_{i} \Delta v_{j}$.
(b) The limit of the Riemann sums using the areas calculated in part (a) is $\iint_{R} \sqrt{1+g_{u}(u, v)^{2}+g_{v}(u, v)^{2}} d A$, an expression for the surface area of the graph. Use this to find the area of the portion of the saddle surface $z=u^{2}-v^{2}$ lying over the unit disk.
(c) Use the surface area formula to find the area of the part of the sphere $x^{2}+y^{2}+z^{2}=$ 4 that lies above the cone $z=\sqrt{x^{2}+y^{2}}$.
(d) Use the surface area formula to find the area of the portion of the plane $a u+$ $b v+c w=d$ lying above (or below, it makes no difference) a domain R in the $u v$ plane. The answer will involve the area of R, area (R), which we cannot express as a number because R is not given explicitly.
27. (11/4) 16.6 \# 7, 9, 15
28. (11/4) $16.6 \# 21,33$ (just find limits for integrating with respect to $d y d z d x$, not all five other possibilities), 35 (just find limits for integrating with respect to $d y d x d z$, not all five other possibilities), 45(a)(b), 46(a)(b), 53
29. (11/9) $16.7 \# 19,25,27,16.8 \# 11-14$ (for 14 , notice that the second equation says $\rho \sin (\phi) \leq 1$, and recall what $\rho \sin (\phi)$ is $, 17,19,20,25$
30. (11/9) $16.9 \# 3,9,10$, 12 (solving for u and v gives $u=x-y$ and $v=3 x+y$, and you find that the parallelogram becomes a square in the $u v$-plane, and the integral computes to 192), 14 (if you compute correctly, the $u v$-region works out to be the unit disk, and $x^{2}-x y+y^{2}$ becomes $u^{2}+v^{2}$)
31. ($11 / 18,11 / 21$ or $11 / 22$, your choice) 16.9 \# 17(a)
32. $(11 / 18,11 / 21$ or $11 / 22$, your choice) $17.1 \# 2$ (what is the vector field like along each vertical line?), 4 (what is the vector field like along the straight lines $x-y=c$?), 11-14, 15-18, 25 (recall that the gradient must be perpendicular to the level curves $x^{2}-y=c$), 29-32 (thinking about level curves may make it easier)
33. $(11 / 18,11 / 21$ or $11 / 22$, your choice) $17.2 \# 3,5,11,13,33,34$ (for 33 and $34, d m$ represents the mass of a piece of the wire of length $d s$, so $d m=k d s$).
34. (11/18, 11/21 or $11 / 22$, your choice) $17.2 \# 17,18,19,21,17.3 \# 1,4,5,11,13,19$, 27, 33
