Quiz 2
September 8, 2011
Instructions: Give concise answers, but clearly indicate your reasoning.
I. Find the cosine of the angle (you don't need to find the angle itself) between the diagonal of a cube and (3) one of its edges.
II. In the standard $x y z$-coordinate system, suppose that $\vec{v}$ is a vector in the $x y$-plane, that starts at the origin (3) and points into quadrant III (where $x<0$ and $y<0$ ), and $\vec{w}$ is a vector in the $x y$-plane that starts at the origin and points into quadrant II (where $x<0$ and $y>0$ ). Draw a picture of the coordinate system, showing such a $\vec{v}$ and $\vec{w}$. Does $\vec{v} \times \vec{w}$ point in the positive or negative $z$-direction?
III. Let $\ell$ be the line through the points $(1,3,2)$ and $(-4,3,0)$.
(6)
(a) Write $\ell$ as a vector-valued function $\vec{r}(t)$.
(b) Write $\ell$ as parametric equations for $x, y$, and $z$ in terms of $t$.
(c) Write an equation for the plane through $(1,3,2)$ that is perpendicular to $\ell$.
IV. Find the point at which the line $x=1+t, y=2 t, z=2-t$ intersects the plane $x-3 y+z=9$.
(3)

