Mathematics 2934-010	Name (please print)	
Quiz 2		
September 8, 2011		
Instructions, Cive consists answers, but clearly indicate your reasoning		

Instructions: Give concise answers, but clearly indicate your reasoning.

- I. Find the cosine of the angle (you don't need to find the angle itself) between the diagonal of a cube and(3) one of its edges.
- II. In the standard xyz-coordinate system, suppose that \vec{v} is a vector in the xy-plane, that starts at the origin
- (3) and points into quadrant III (where x < 0 and y < 0), and \vec{w} is a vector in the *xy*-plane that starts at the origin and points into quadrant II (where x < 0 and y > 0). Draw a picture of the coordinate system, showing such a \vec{v} and \vec{w} . Does $\vec{v} \times \vec{w}$ point in the positive or negative z-direction?
- **III.** Let ℓ be the line through the points (1,3,2) and (-4,3,0).
- (6)
 - (a) Write ℓ as a vector-valued function $\vec{r}(t)$.
 - (b) Write ℓ as parametric equations for x, y, and z in terms of t.
 - (c) Write an equation for the plane through (1,3,2) that is perpendicular to ℓ .

IV. Find the point at which the line x = 1 + t, y = 2t, z = 2 - t intersects the plane x - 3y + z = 9. (3)