Quiz 3

September 29, 2011

Instructions: Give concise answers, but clearly indicate your reasoning.

- I. For the vector-valued function $\vec{r}(t) = \cos(t^2)\vec{i} + \sin(t^2)\vec{j}$, the velocity is $\vec{v}(t) = -2t\sin(t^2)\vec{i} + 2t\cos(t^2)\vec{j}$, and
- (15) the acceleration is $\vec{a}(t) = (-2\sin(t^2) 4t^2\cos(t^2))\vec{i} + (2\cos(t^2) 4t^2\sin(t^2))\vec{j}.$
 - (a) Draw a large graph showing the curve traced out by the function for $0 \le t \le \sqrt{\pi}$.
 - (b) On your graph, draw the velocity vectors for t = 1/2 and t = 1 (remember that 1 radian is a little less than $\pi/3$ radians, that is, a little less than 60 degrees).
 - (c) Calculate the speed.
 - (d) Calculate the unit tangent vector $\vec{T}(t)$.
 - (e) Calculate the length of $\frac{d\vec{T}(t)}{dt}$. How is it related to the speed? Why?
 - (f) Calculate the tangential component of acceleration.
- II. At time t = 0, a particle is located at (0, 1) and is not moving. Starting at time t = 0, it moves with
- (5) acceleration $\vec{a}(t) = 12t^2 \vec{i} 12t \vec{j}$. Where is it located at time t = 1?