September 29, 2011
Instructions: Give concise answers, but clearly indicate your reasoning.
I. For the vector-valued function $\vec{r}(t)=\cos \left(t^{2}\right) \vec{\imath}+\sin \left(t^{2}\right) \vec{\jmath}$, the velocity is $\vec{v}(t)=-2 t \sin \left(t^{2}\right) \vec{\imath}+2 t \cos \left(t^{2}\right) \vec{\jmath}$, and (15) the acceleration is $\vec{a}(t)=\left(-2 \sin \left(t^{2}\right)-4 t^{2} \cos \left(t^{2}\right)\right) \vec{\imath}+\left(2 \cos \left(t^{2}\right)-4 t^{2} \sin \left(t^{2}\right)\right) \vec{\jmath}$.
(a) Draw a large graph showing the curve traced out by the function for $0 \leq t \leq \sqrt{\pi}$.
(b) On your graph, draw the velocity vectors for $t=1 / 2$ and $t=1$ (remember that 1 radian is a little less than $\pi / 3$ radians, that is, a little less than 60 degrees).
(c) Calculate the speed.
(d) Calculate the unit tangent vector $\vec{T}(t)$.
(e) Calculate the length of $\frac{d \vec{T}(t)}{d t}$. How is it related to the speed? Why?
(f) Calculate the tangential component of acceleration.
II. At time $t=0$, a particle is located at $(0,1)$ and is not moving. Starting at time $t=0$, it moves with (5) acceleration $\vec{a}(t)=12 t^{2} \vec{\imath}-12 t \vec{\jmath}$. Where is it located at time $t=1$?

