Instructions: Give concise answers, but clearly indicate your reasoning.
I. Consider the solid in the first octant bounded by the three coordinate planes and the plane $3 x+2 y+z=6$. (6)
(a) What are the x and y-intercepts of the plane?
(b) The base of the solid is a triangle in the $x y$-plane. In an $x y$-plane, draw a picture of the base, and give equations for its sides.
(c) Write a double integral to find the volume of the solid. Supply specfic limits of integration, but do not carry out any further calculations or try to evaluate it.
II. A lamina occupies the unit square R, where $0 \leq x \leq 1$ and $0 \leq y \leq 1$. Its density at (x, y) is proportional
(6) to x^{3}. Write definite integrals to calculate each of the following, but do not carry out the evaluation of the integrals.
(a) The mass of the lamina.
(b) The moment of the lamina with respect to the x-axis.
(c) The x-coordinate of the center of mass of the lamina, where m is its mass.
III. Change the order of integration for the following integral, but do not carry out any further calculations or
(4) try to evaluate it: $\int_{0}^{8} \int_{\sqrt[3]{y}}^{2} e^{x^{4}} d x d y$.
IV. Using polar coordinates, evaluate the integral $\iint_{D} 2 e^{-x^{2}-y^{2}} d A$, where D is the region bounded by $y=$ (4) $\sqrt{4-x^{2}}$ and the x-axis.

