Instructions: Give concise answers, but clearly indicate your reasoning. Remember that ∇f and $\operatorname{grad}(f)$ both mean the gradient of f.
I. State Green's Theorem for a domain D with boundary a positively oriented simple loop C. Include any (2) important conditions that the functions P and Q in its statement must satisfy.
II. Let C be the unit circle, oriented counterclockwise. Use Green's Theorem to calculate
(3) $\quad \int\left(\left(2 x+y^{2}\right) \vec{\imath}+\left(2 x y-2 x+\sin \left(y^{2}\right)\right) \vec{\jmath}\right) \cdot d \vec{r}$.
III. Let T be the triangle with vertices at $(1,0),(0,1)$, and $(0,0)$. Let C be the boundary of T, with the positive (5) orientation.
(a) Use Green's Theorem to verify that $\int_{C} x d y$ equals the area of T.
(b) Let C_{1} be the side of T from $(0,1)$ to $(0,0), C_{2}$ be the side of T from $(0,0)$ to $(1,0)$, and C_{3} be the side of T from (1,0) to $(0,1)$. Without calculating them, explain why $\int_{C_{1}} x d y$ and $\int_{C_{2}} x d y$ are zero.
(c) Use the parameterization $x=1-t, y=t, 0 \leq t \leq 1$ to calculate $\int_{C_{3}} x d y$ (from parts (a) and (b), the answer should equal the area of T, that is, $\frac{1}{2}$).
IV. (a) Define what it means to say that a domain D in the plane is simply-connected.
(3)
(b) Tell the important and non-obvious property we have studied that is true for vector fields $P \vec{\imath}+Q \vec{\jmath}$ on simply-connected planar domains, but not necessarily true for domains that are not simply-connected.
(c) Give an example of a vector field illustrating that the property in (b) is not necessarily true for non-simplyconnected domains. You do not need to verify the properties, just tell the vector field and the domain.
V. Let f be a scalar field in \mathbb{R}^{3} (that is, a function of (x, y, z)) and let \vec{F} be a vector field in \mathbb{R}^{3}. Determine (3) whether each of the following is a scalar field, a vector field, or meaningless.
(a) $\operatorname{div}(\operatorname{curl}(\operatorname{curl}(\vec{F})))$
(b) $\operatorname{div}(\vec{F} \times \operatorname{curl}(\vec{F})) \operatorname{grad}(f)$
(c) $\operatorname{curl}(\vec{F}) \cdot(\operatorname{curl}(\vec{F}) \times \operatorname{curl}(\vec{F}))$
VI. Let C be an oriented path in the plane, with unit tangent \vec{T}, and let f be a differentiable function in the (4) plane.
(a) What is a simple interpretation of $\nabla f \cdot \vec{T}$?
(b) How is $\nabla f \cdot \vec{T}$ related to $\int_{C} \nabla f \cdot d \vec{r}$?
(c) What do (a) and (b) tell us, at least intuitively, about $\int_{C} \nabla f \cdot d \vec{r}$?

