Mathematics 2934-010

Exam II

October 17, 2011

Instructions: Give concise answers, but clearly indicate your reasoning. Do not simplify the answers unless you find yourself with enough time at the end.

I. Calculate the following.

(12)
1.
$$\frac{\partial}{\partial y} \left(\int_{y}^{x^{2}} e^{-t^{2}} dt \right)$$

2. $\frac{\partial}{\partial x} \left(\int_{y}^{x^{2}} e^{-t^{2}} dt \right)$

3.
$$f_{tx}(x, y, z, t)$$
 if $f_x(x, y, z, t) = \frac{1}{x^2 y^2 z^2 t^2}$

4. df if
$$f(x, y, z) = x^3 y z$$

II. Clairaut's Theorem tells us there is no function g(x,y) for which $\nabla g = 2x \sin(y)\vec{i} + ye^x \vec{j}$. Explain why. (4)

- III. Let $f(x, y, z) = x^2 + y^2 + z^3$. (8)
 - 1. Find the maximum directional rate of change at (x, y, z) = (-2, 0, 1).
 - 2. Find the rate of change at (x, y, z) = (-1, -1, -2) in the direction $2\vec{i} \vec{j} 2\vec{k}$.
 - 3. Write an equation for the tangent plane to the level surface through (-2, 0, 1).

IV. Let f(x, y) be a differentiable function of x and y. (7)

- (a) Use the Chain Rule to calculate $\frac{\partial f}{\partial \theta}$, where θ is the polar angle. Express $\frac{\partial f}{\partial \theta}$ purely in terms of $x, y, \frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ (that is, without using r or θ).
- (b) In the case of $f(x,y) = x^2 + y^2$, the formula should give $\frac{\partial f}{\partial \theta} = 0$. Why is the fact that $\frac{\partial}{\partial \theta}(x^2 + y^2) = 0$ geometrically obvious without doing any calculations at all?
- **V**. (a) Define the graph of a function f(x, y) of two variables.
- (5)
 - (b) For a certain function f(x, y), f(1, 4) = 5 and $\frac{\partial f}{\partial y}(1, 4) = 3$. Let L be the line tangent to the graph of f at the point (1, 4, 5) and lying in the plane x = 1. Tell a direction vector for L.

VI. Suppose that $\vec{T}(t)$ is the unit tangent vector to some curve. Show that $\vec{T}'(t)$ is orthogonal (that is, (3) perpendicular) to $\vec{T}(t)$.

- **VII.** For the vector-valued function $\vec{r}(t) = 4\cos(t/2)\vec{i} + 4\sin(t/2)\vec{j}$, the velocity is $\vec{v}(t) = -2\sin(t/2)\vec{i} + 2\cos(t/2)\vec{j}$.
- (10) (a) Draw a large graph showing the curve traced out by $\vec{r}(t)$ for $0 \le t \le 3\pi$.
 - (b) Calculate the velocity and speed, and draw the velocity vectors for $t = \pi$ and t = 1, showing with reasonable accuracy their locations and lengths.
 - (c) Calculate $\|\vec{T}'(t)\|/(ds/dt)$.
 - (d) Calculate the tangential component of the vectors $\vec{w}(t) = -3\vec{i}$.

VIII. A particle moves with acceleration $2t \vec{i} - 12t \vec{j}$. At time t = 0, it is located at (0, 1, 0) and is moving with (4) velocity \vec{k} . Find its position function $\vec{r}(t)$.