October 17, 2011
Instructions: Give concise answers, but clearly indicate your reasoning. Do not simplify the answers unless you find yourself with enough time at the end.
I. Calculate the following.
(12)

1. $\frac{\partial}{\partial y}\left(\int_{y}^{x^{2}} e^{-t^{2}} d t\right)$
2. $\frac{\partial}{\partial x}\left(\int_{y}^{x^{2}} e^{-t^{2}} d t\right)$
3. $f_{t x}(x, y, z, t)$ if $f_{x}(x, y, z, t)=\frac{1}{x^{2} y^{2} z^{2} t^{2}}$
4. $d f$ if $f(x, y, z)=x^{3} y z$
II. Clairaut's Theorem tells us there is no function $g(x, y)$ for which $\nabla g=2 x \sin (y) \vec{\imath}+y e^{x} \vec{\jmath}$. Explain why.
III. Let $f(x, y, z)=x^{2}+y^{2}+z^{3}$.
(8)
5. Find the maximum directional rate of change at $(x, y, z)=(-2,0,1)$.
6. Find the rate of change at $(x, y, z)=(-1,-1,-2)$ in the direction $2 \vec{\imath}-\vec{\jmath}-2 \vec{k}$.
7. Write an equation for the tangent plane to the level surface through $(-2,0,1)$.
IV. Let $f(x, y)$ be a differentiable function of x and y.
(a) Use the Chain Rule to calculate $\frac{\partial f}{\partial \theta}$, where θ is the polar angle. Express $\frac{\partial f}{\partial \theta}$ purely in terms of $x, y, \frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ (that is, without using r or $\left.\theta\right)$.
(b) In the case of $f(x, y)=x^{2}+y^{2}$, the formula should give $\frac{\partial f}{\partial \theta}=0$. Why is the fact that $\frac{\partial}{\partial \theta}\left(x^{2}+y^{2}\right)=0$ geometrically obvious without doing any calculations at all?
V. (a) Define the graph of a function $f(x, y)$ of two variables.
(b) For a certain function $f(x, y), f(1,4)=5$ and $\frac{\partial f}{\partial y}(1,4)=3$. Let L be the line tangent to the graph of f at the point $(1,4,5)$ and lying in the plane $x=1$. Tell a direction vector for L.
VI. Suppose that $\vec{T}(t)$ is the unit tangent vector to some curve. Show that $\vec{T}^{\prime}(t)$ is orthogonal (that is, perpendicular) to $\vec{T}(t)$.
VII. For the vector-valued function $\vec{r}(t)=4 \cos (t / 2) \vec{\imath}+4 \sin (t / 2) \vec{\jmath}$, the velocity is $\vec{v}(t)=-2 \sin (t / 2) \vec{\imath}+2 \cos (t / 2) \vec{\jmath}$. (10)
(a) Draw a large graph showing the curve traced out by $\vec{r}(t)$ for $0 \leq t \leq 3 \pi$.
(b) Calculate the velocity and speed, and draw the velocity vectors for $t=\pi$ and $t=1$, showing with reasonable accuracy their locations and lengths.
(c) Calculate $\left\|\overrightarrow{T^{\prime}}(t)\right\| /(d s / d t)$.
(d) Calculate the tangential component of the vectors $\vec{w}(t)=-3 \vec{\imath}$.
VIII. A particle moves with acceleration $2 t \vec{\imath}-12 t \vec{\jmath}$. At time $t=0$, it is located at $(0,1,0)$ and is moving with velocity \vec{k}. Find its position function $\vec{r}(t)$.
