Exam III

November 14, 2011
Instructions: Give concise answers, but clearly indicate your reasoning.
I. Find all critical points of the function $e^{y}\left(y^{2}-x^{2}\right)$.
II. Here is a minimization problem: "Find three numbers whose sum is 18 and so that the sum of the square
(4) of the first, plus twice the square of the second, plus three times the square of the third, is as small as possible." Set up the minimization problem as a problem of minimizing a function of two variables, but do not proceed further with the problem.
III. Find the maximum and minimum values of the function $f(x, y)=x^{2}+y$ on the unit circle, by parameterizing
(6) the boundary and expressing f as a function of the parameter, then finding the maximum and minimum values of that function.
IV. For the integral $\int_{-3}^{0} \int_{-\sqrt{9-y^{2}}}^{\sqrt{9-y^{2}}} x^{3}+x y^{2} d x d y$:
(6)
(a) Rewrite the integral to reverse the order of integration and supply the limits of integration, but do not continue further with its evaluation.
(b) Rewrite the integral using polar coordinates and supply the limits of integration, but do not continue further with its evaluation.
V. Consider a lamina occupying the region D in the $x y$-plane which is a triangle with vertices $(0,0),(1,2)$,
(6) and $(2,0)$. Suppose that its density at the point (x, y) is $x+y$. Write expressions involving integrals for each of the following. Supply limits of integration for the integrals, but do not evaluate them.
(a) The mass of the lamina.
(b) The x-coordinate of its center of mass.
VI. Recall that if a surface S is the graph of a function f, that is, when it is the graph of the equation
(8) $\quad z=f(x, y)$, then the local relation between surface area on S and surface area $d R=d x d y$ in the $x y$-plane below it is that $d S=\sqrt{1+f_{x}^{2}+f_{y}^{2}} d R$. Let S be the portion of the sphere $x^{2}+y^{2}+z^{2}=3$ that lies inside the region above the cone $z=\sqrt{x^{2}+y^{2}}$.
(a) Compute $\sqrt{1+f_{x}^{2}+f_{y}^{2}}$ for the function $f(x, y)=\sqrt{3-x^{2}-y^{2}}$.
(b) Find the region R in the $x y$-plane that lies below the surface S.
(c) Write an integral whose value is the area of S. Express the integral in polar coordinates and supply the limits of integration, but do not evaluate the integral.
VII. Sketch the solid whose volume is given by the integral $\int_{0}^{1} \int_{0}^{2-2 x} \int_{x+\frac{y}{2}}^{1} d z d y d x$. It might help to notice
(4) that $z=x+\frac{y}{2}$ is a plane that passes through $(0,2,1)$ and $(1,0,1)$.
VIII. When we specialize spherical coordinates to the (7) points on a sphere of radius a, we obtain a parameterization of the sphere in terms of θ and ϕ, given by the formulas $x=a \sin (\phi) \cos (\theta)$, $y=a \sin (\phi) \sin (\theta), z=a \cos (\phi)$. There is also the useful formula $r=a \sin (\phi)$.
(a) Draw the region in the $\theta \phi$-plane that corresponds to the entire surface of the sphere. Show which lines correspond to latitudes on the sphere, and which lines corrspond to longitudes on the sphere.
(b) In the figure to the right, label $d \theta$ and $d \phi$. Label various distances and use them to figure out an expression for $d S$ in terms of $d \theta$ and $d \phi$.

IX. Sketch the solid whose volume is given by the integral $\int_{\pi / 2}^{\pi} \int_{0}^{2 \pi} \int_{1}^{2} \rho^{2} \sin (\phi) d \rho d \theta d \phi$.
\mathbf{X}. Consider the transformation $x=e^{s-t}, y=e^{s+t}$ from the st-plane to the region $x>0, y>0$ in the (10) $x y$-plane.
(a) Calculate the Jacobian of this parameterization.
(b) Find the (s, t)-values where the transformation increases area locally.
(c) Let R be the region in the $x y$-plane bounded by $x y=1, x y=3, y=x$, and $y=3 x$, as in the problem that we analyzed in class. Take as given the fact that R corresponds to the square S in the st-plane given by $0 \leq s \leq \ln (3) / 2$ and $0 \leq t \leq \ln (3) / 2$, write an integral in terms of s and t which equals $\iint_{R} x y d A$. Supply the limits of integration, but do not evaluate the integral (the evaluation is not hard, it gives the answer $2 \ln (3)$ which agrees with the two methods we used for this problem in class).

