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In [9], P. W. Wade and W. R. Wade (no relation to the second author)
gave a recursion formula that produces Pythagorean triples. In fact, it
produces all Pythagorean triples (a, b, c) having a given value of the height,
which is defined to be h = c − b. For the cases when h is a square or
twice a square, they gave a complete proof that the recursion generates all
Pythagorean triples. In this note, we give a quick proof of this for all values
of h, using a formula that gives all Pythagorean triples.

We call the formula the height-excess enumeration because its parameters
are the height and certain multiples of the excess e = a + b − c. This
enumeration method appears several times in the literature, but does not
seem to be widely known. We will discuss these origins after giving the
formula. A more extensive treatment of the height-excess enumeration and
other applications of it appear in [7].

To set terminology, a Pythagorean triple (PT) is an ordered triple (a, b, c)
of positive integers such that a2 + b2 = c2. A PT is primitive when it is
not a multiple of a smaller triple. A PT with a < b is called a Pythagorean
triangle. A number is called square-free if it is not divisible by the square
of any prime number.

Height-Excess Enumeration Theorem. To a positive integer h, written
as pq2 with p square-free and q positive, associate the number d equal to 2pq
if p is odd, and to pq if p is even. As one takes all pairs (h, k) of positive
integers, the formula

P (k, h) =
(
h+ dk, dk +

(dk)2

2h
, h+ dk +

(dk)2

2h

)
produces each Pythagorean triple exactly once. The primitive Pythagorean
triples occur exactly when gcd(k, h) = 1 and either h = q2 with q odd, or

h = 2q2. The Pythagorean triangles occur exactly when k >
h

d

√
2.

Notice that h is the height and dk is the excess of P (k, h). Figure 1 shows
geometric interpretations of h and k. The number d is called the increment.

Table 1 shows the first 12 PT’s of height h when h is 1, 2, 81, and 162,
with the primitive PT’s indicated by an asterisk.
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Figure 1. Height and excess of a Pythagorean triangle.

h = 1 h = 2 h = 81 h = 162
(3, 4, 5)* (4, 3, 5)* (99, 20, 101)* (180, 19, 181)*
(5, 12, 13)* (6, 8, 10) (117, 44, 125)* (198, 40, 202)
(7, 24, 25)* (8, 15, 17)* (135, 72, 153) (216, 63, 225)
(9, 40, 41)* (10, 24, 26) (153, 104, 185)* (234, 88, 250)
(11, 60, 61)* (12, 35, 37)* (171, 140, 221)* (252, 115, 277)*
(13, 84, 85)* (14, 48, 50) (189, 180, 261) (270, 144, 306)
(15, 112, 113)* (16, 63, 65)* (207, 224, 305)* (288, 175, 337)*
(17, 144, 145)* (18, 80, 82) (225, 272, 353)* (306, 208, 370)
(19, 180, 191)* (20, 99, 101)* (243, 324, 405) (324, 243, 405)
(21, 220, 221)* (22, 120, 122) (261, 380, 461)* (342, 280, 442)
(23, 264, 265)* (24, 143, 145)* (279, 440, 521)* (360, 319, 481)*
(25, 312, 313)* (26, 168, 170) (297, 504, 585) (378, 360, 522)

Table 1. The first 12 PT’s for heights 1, 2, 81, and 162.
The primitive PT’s are starred.

As far as we can determine, the first use of the height and excess as
parameters to enumerate PT’s was by M. G. Teigan and D. W. Hadwin in

[8]. The parameters used there are x = h, y =
e2

2h
(which, being c − a, is

the height of (b, a, c)), and z = e. A similar method is found in [6]. The
height-excess enumeration is implicit in [9], and explicit versions of it appear
in [2] and [10].

We present a proof of the Height-Excess Enumeration Theorem in sec-
tion 1. In section 2, we derive the Wade-Wade recursion formula, and in
section 3, we briefly discuss another recursion formula for PT’s, involving a
generalized Fibonacci sequence, from the height-excess viewpoint.

1. Proof of the Height-Excess Enumeration Theorem

We first develop the key properties of d. As usual, the notation x|y means
that the integer y is divisible by the integer x.
Lemma. Let h be a positive integer with associated increment d. Then
2h|d2. If D is any positive integer for which 2h|D2, then d|D.
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Proof. If p is odd, then d2 = 4p2q2 = 2p · 2h. If p is even, say p = 2p0,
then d2 = 4p2

0q
2 = p0 · 2h. So 2h|d2. For the second assertion of the

Lemma, writeD in terms of its distinct prime factors, D = dr11 · · · d
rk
k , so that

D2 = d2r1
1 · · · d2rk

k . Similarly, write p = p1 · · · pm and q2 = q2t1
1 · · · q2tn

n . When
2h|D2, each qi must equal a dj , with their exponents satisfying 2ti ≤ 2rj and
hence ti ≤ rj . This shows that q|D, say D = q ·D1 where D1 = su1

1 · · · s
u`
` .

Since 2pq2|D2 and D2 = q2D2
1, we have 2p|D2

1. So each pi is one of the sj ,
showing that p|D1. Also, if p is odd, then since 2p|D2

1, 2 is one of the sj , so
2p|D1. So pq|D, and if p is odd, then 2pq|D. That is, d|D. �

Now we prove the Theorem. By the Lemma, the coordinates of P (k, h)
are positive integers, and using basic algebra one can verify that they satisfy
the Pythagorean relation. Using h = c−b, e = a+b−c, and the Pythagorean
relation, more algebra shows that for any PT,

(a, b, c) =
(
h+ e, e+

e2

2h
, h+ e+

e2

2h

)
.

The Pythagorean relation implies that e2 = 2(c−a)(c− b), so 2h|e2. By the
Lemma, e is divisible by d. So every PT equals some P (k, h). Since any PT
determines h and e uniquely, it also determines k uniquely, so it can equal
only one P (k, h).

We note that P (k, h) is a triangle exactly when h + dk < dk +
(dk)2

2h
,

which says that k >
h

d

√
2, so it remains only to establish the criterion for

P (k, h) to be primitive.
We will first show that if (a, b, c) is primitive, then c − a and c − b are

relatively prime. If r were a prime dividing both of them, then r would divide
the sum (c−a)2 + (c− b)2 = (3c−2a−2b)c. Now r could not divide c, since
then it would divide a and b and (a, b, c) would not be primitive. So r divides
3c− 2a− 2b = 2(c− a) + 2(c− b)− c, again giving the contradiction that r

divides c. We conclude that c−a = k2 d
2

2h
and c−b = h are relatively prime.

For p odd, these are 2pk2 and pq2, so p = 1, q is odd, and gcd(2k, q) = 1.
For p even, they are k2 p

2
and pq2, so p = 2 and gcd(k, 2q) = 1.

Conversely, suppose that h and k satisfy the given conditions. For h = q2,
(a, b) is (q(q + 2k), 2k(q + k)). If r is a prime dividing both entries, then
r 6= 2 since the first entry is odd. So r must divide q or q + 2k, and must
divide k or q + k. Any of the four possible combinations leads to r dividing
both q and k, a contradiction. For h = 2q2, (a, b) is (2q(k + q), k(2q + k))
and the reasoning is similar.

2. The Wade-Wade recursion formula

Simple recursion formulas for generating PT’s of a fixed height have
long been known. An early example is [1], which provides recursions that
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start with a PT and produce some but not usually all of the other PT’s
with the same height. P. W. Wade and W. R. Wade [9] gave a recursion
formula which generates all PT’s of height h, verifying this fully for the
cases when h is of the form q2 or 2q2. Using the Height-Excess Enumer-
ation Theorem, we will verify their recursion formula for all h. Putting

(ak, bk, ck) =
(
h+ dk, dk +

(dk)2

2h
, h+ dk +

(dk)2

2h

)
, we have

(ak+1, bk+1) =
(
h+ d(k + 1), d(k + 1) +

(d(k + 1))2

2h

)
=

(
h+ dk + d, dk + d+

(dk)2

2h
+ dk

d

h
+
d2

2h

)
=

(
ak + d,

d

h
ak + bk +

d2

2h

)
.

so (ak+1, bk+1, ck+1) = (ak + d,
d

h
ak + bk +

d2

2h
,
d

h
ak + ck +

d2

2h
). If we start

with (a0, b0, c0) = (h, 0, h), this recursion produces exactly the triples in
the Theorem that have height h— first the finitely many PT’s of height

h that are not Pythagorean triangles, and then, once k exceeds
h

d

√
2, the

infinitely many Pythagorean triangles of height h. The triples in table 1
were calculated using the Wade-Wade recursion formula and Mathematica.

3. PT’s and Fibonacci-like sequences

Other recursive methods for producing PT’s have been developed. For
example, the following method based on a generalized Fibonacci sequence
was given by Horadam [3, 4]. Start with positive integers r and s. Put
H1 = r, H2 = s, and Hn = Hn−1 +Hn−2 for n ≥ 3. The triples

(2Hn+1Hn+2,HnHn+3, 2Hn+1Hn+2 +H2
n)

are PT’s with a even. Using the Fibonacci identity, this triple can be written
as

(2H2
n+1 + 2HnHn+1,H

2
n + 2HnHn+1,H

2
n + 2HnHn+1 + 2H2

n+1)

which is exactly P (Hn, 2H2
n+1).

Notice that in any primitive PT, c is odd and exactly one of a and b is
odd, so a is even if and only if the height is even. So the primitive PT’s with
a even are exactly the P (k, 2q2) with k and 2q relatively prime. As noted
in [3], these are Horadam PT’s with H1 = k and H2 = q.

Now, Hn and Hn+1 are relatively prime if and only if r and s were
relatively prime, so the Horadam PT is primitive exactly when r and s
were relatively prime and Hn is odd. If r and s are relatively prime and
Hn is even, then Hn+1 is odd and Hn/2 and Hn+1 are relatively prime.
Thus, P (Hn/2,H2

n+1) is primitive, and one finds that 2P (Hn/2,H2
n+1) =

P (Hn, 2H2
n+1), so the Horadam triple is 2 times a primitive PT (note that
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in general, however, mP (k, h) 6= P (mk,mh), for example P (1, 2) = (4, 3, 5)
but P (2, 4) = (12, 16, 20)).

It would be interesting to see whether some of the more sophisticated
Fibonacci recursion methods for producing triples, such as that of [5], can
be analyzed using the height-excess enumeration.
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