Mathematics 2443-004
Final Examination
May 5, 2000

Name (please print)
Student Number
I. (a) In the coordinate system shown below, draw a typical graph of a function $z=g(x, y)$ with domain the (10) square $0 \leq x \leq 1,0 \leq y \leq 1$. Regard it as a parameterized surface with parameterization $x=x, y=y$, and $z=g(x, y)$.

(b) At some point on the graph, draw the vectors \vec{r}_{x} and \vec{r}_{y}. Calculate explicit expressions for these vectors.
(c) Use the expressions in (b) to calculate $\vec{r}_{x} \times \vec{r}_{y}$.
(d) Calculate an expression for $\left\|\vec{r}_{x} \times \vec{r}_{y}\right\|$.
II. (a) Use Stokes' Theorem $\iint_{S} \operatorname{curl} \vec{F} \cdot d \vec{S}=\int_{C} \vec{F} \cdot d \vec{R}$ to calculate $\int_{C}(x \vec{\imath}+x \vec{\jmath}+x \vec{k}) \cdot d \vec{r}$, where C is the unit (10) circle in the $x y$-plane, oriented counterclockwise, and S is the unit disc in the $x y$-plane.
(b) Calculate the line integral in part (a) directly (i. e. using a parameterization $\vec{r}(t)$ of C).
III. The equations $x=a \sin (\phi) \cos (\theta), y=a \sin (\phi) \sin (\theta), z=a \cos (\phi)$ give a parametric representation of the (12) sphere $x^{2}+y^{2}+z^{2}=a^{2}$.

1. Calculate \vec{r}_{ϕ} and \vec{r}_{θ}.
2. On this picture of the sphere, label the lines where θ is constant, and those where ϕ is constant. Draw some of the vectors \vec{r}_{ϕ} and \vec{r}_{θ}, and also some of the vectors $\vec{r}_{\phi} \times \vec{r}_{\theta}$.

3. Let S be the portion of the sphere with $z \geq 0$, that is, the top half of the sphere, and with the outward normal vector. Take as given the fact that $\vec{r}_{\phi} \times \vec{r}_{\theta}$ is $a^{2} \sin (\phi)(x \vec{\imath}+y \vec{\jmath}+z \vec{k})$. Use the formula $\iint_{S} \vec{F} \cdot d \vec{S}=$ $\iint_{D} \vec{F} \cdot\left(\vec{r}_{\phi} \times \vec{r}_{\theta}\right) d D$ to calculate $\iint_{S} \vec{k} \cdot d \vec{S}$.
4. Use the Divergence Theorem to calculate $\iint_{T} \vec{k} \cdot d \vec{T}$, where T is the entire sphere $x^{2}+y^{2}+z^{2}=a^{2}$, with the outward normal vector.
IV. Let $f(x, y, z)$ be a function of three variables. Suppose that a surface S is parameterized by the equations (8) $x=x(u, v), y=y(u, v)$, and $z=z(u, v)$.
5. Use the Chain Rule to get an expression for $\frac{\partial f}{\partial u}$.
6. Calculate \vec{r}_{u}.
7. Use ∇f to calculate $D_{\vec{r}_{u}} f$, the directional derivative of f in the direction of \vec{r}_{u}.
V. Use the Divergence Theorem $\iint_{S} \vec{F} \cdot d \vec{S}=\iiint_{E} \operatorname{div} \vec{F} d V$ to calculate $\iint_{S}(\sin (x) \vec{\imath}+\sin (y) \vec{\jmath}+\sin (z) \vec{k}) \cdot d \vec{S}$, (7) where S is the unit cube $0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1$ with the outward normal.
VI. Let R be a region in the plane. Define what it means to say that R is simply-connected. Explain how the (4) definition shows that the region given in polar coordinates by $1<r<2$ is not simply-connected.
VII. Let D be the unit disc consisting of all (x, y) for which $x^{2}+y^{2} \leq 1$. Let $f(x, y)=x^{2}+x y^{2}$. Use the methods of section 12.7 (i. e. critical points and investigation of the values of f to the boundary of D) to determine the maximum and minimum values of f on D, and the point or points at which they occur.
VIII. Verify that the vector field $\cos \left(x^{2}\right) \sin \left(y^{2}\right) \vec{\imath}+\sin \left(x^{2}\right) \cos \left(y^{2}\right) \vec{\jmath}$ in the plane is not conservative. (4)
IX. Calculate $\int_{C}\left(x^{99} y^{100} \vec{\imath}+x^{100} y^{99} \vec{\jmath}\right) \cdot d \vec{r}$, where C is the straight line from $(1,1)$ to $(2 \pi, 0)$. (5)
X. Calculate the following partial derivatives.
(9)
8. f_{v} if $f(u, v)=\tan ^{-1}\left(\frac{u}{v}\right)$
9. $\frac{\partial R}{\partial R_{2}}$ if $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}$
10. $\frac{\partial^{2} w}{\partial r \partial \theta}$ if $w=\cos (r \theta)$
