Mathematics 2443-004	Name (please print)
Final Examination	Student Number
May 5, 2000	

- I. (a) In the coordinate system shown below, draw a typical graph of a function z = g(x, y) with domain the
- (10) square $0 \le x \le 1$, $0 \le y \le 1$. Regard it as a parameterized surface with parameterization x = x, y = y, and z = g(x, y).

(b) At some point on the graph, draw the vectors $\vec{r_x}$ and $\vec{r_y}$. Calculate explicit expressions for these vectors.

(c) Use the expressions in (b) to calculate $\vec{r_x} \times \vec{r_y}$.

(d) Calculate an expression for $\|\vec{r}_x \times \vec{r}_y\|$.

- (a) Use Stokes' Theorem $\iint_S \operatorname{curl} \vec{F} \cdot d\vec{S} = \int_C \vec{F} \cdot d\vec{R}$ to calculate $\int_C (x\vec{\imath} + x\vec{\jmath} + x\vec{k}) \cdot d\vec{r}$, where C is the unit circle in the xy-plane, oriented counterclockwise, and S is the unit disc in the xy-plane. II.
- (10)

(b) Calculate the line integral in part (a) directly (i. e. using a parameterization $\vec{r}(t)$ of C).

- **III.** The equations $x = a \sin(\phi) \cos(\theta)$, $y = a \sin(\phi) \sin(\theta)$, $z = a \cos(\phi)$ give a parametric representation of the (12) sphere $x^2 + y^2 + z^2 = a^2$.
 - 1. Calculate \vec{r}_{ϕ} and \vec{r}_{θ} .
 - 2. On this picture of the sphere, label the lines where θ is constant, and those where ϕ is constant. Draw some of the vectors \vec{r}_{ϕ} and \vec{r}_{θ} , and also some of the vectors $\vec{r}_{\phi} \times \vec{r}_{\theta}$.

3. Let S be the portion of the sphere with $z \ge 0$, that is, the top half of the sphere, and with the outward normal vector. Take as given the fact that $\vec{r}_{\phi} \times \vec{r}_{\theta}$ is $a^2 \sin(\phi)(x\vec{\imath} + y\vec{\jmath} + z\vec{k})$. Use the formula $\iint_S \vec{F} \cdot d\vec{S} = \iint_D \vec{F} \cdot (\vec{r}_{\phi} \times \vec{r}_{\theta}) \, dD$ to calculate $\iint_S \vec{k} \cdot d\vec{S}$.

4. Use the Divergence Theorem to calculate $\iint_T \vec{k} \cdot d\vec{T}$, where T is the entire sphere $x^2 + y^2 + z^2 = a^2$, with the outward normal vector.

- **IV**. Let f(x, y, z) be a function of three variables. Suppose that a surface S is parameterized by the equations (8) x = x(u, v), y = y(u, v), and z = z(u, v).
 - 1. Use the Chain Rule to get an expression for $\frac{\partial f}{\partial u}$.

2. Calculate $\vec{r_u}$.

3. Use ∇f to calculate $D_{\vec{r}_u} f$, the directional derivative of f in the direction of \vec{r}_u .

V. Use the Divergence Theorem $\iint_S \vec{F} \cdot d\vec{S} = \iiint_E \operatorname{div} \vec{F} \, dV$ to calculate $\iint_S (\sin(x)\vec{\imath} + \sin(y)\vec{\jmath} + \sin(z)\vec{k}) \cdot d\vec{S}$, (7) where S is the unit cube $0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1$ with the outward normal.

VI. Let R be a region in the plane. Define what it means to say that R is simply-connected. Explain how the (4) definition shows that the region given in polar coordinates by $1 \le n \le 2$ is not simply connected.

(4) definition shows that the region given in polar coordinates by 1 < r < 2 is not simply-connected.

- VII. Let D be the unit disc consisting of all (x, y) for which $x^2 + y^2 \le 1$. Let $f(x, y) = x^2 + xy^2$. Use the (7) methods of section 12.7 (i. e. critical points and investigation of the values of f to the boundary of D) to
- (7) methods of section 12.7 (i. e. critical points and investigation of the values of f to the boundary of D) to determine the maximum and minimum values of f on D, and the point or points at which they occur.

VIII. Verify that the vector field $\cos(x^2)\sin(y^2)\vec{\imath} + \sin(x^2)\cos(y^2)\vec{\jmath}$ in the plane is not conservative. (4)

IX. Calculate $\int_C (x^{99}y^{100}\vec{\imath} + x^{100}y^{99}\vec{\jmath}) \cdot d\vec{r}$, where C is the straight line from (1,1) to (2 π , 0). (5)

X. Calculate the following partial derivatives.(9)

1.
$$f_v$$
 if $f(u, v) = \tan^{-1}(\frac{u}{v})$

2.
$$\frac{\partial R}{\partial R_2}$$
 if $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$

3.
$$\frac{\partial^2 w}{\partial r \partial \theta}$$
 if $w = \cos(r\theta)$